 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 2. Tích vô hướng của hai vectơ
                                                        Bài 2. Tích vô hướng của hai vectơ
                                                    Bài 11 trang 52 SGK Hình học 10 nâng cao>
Cho hai đường thẳng a và b cắt nhau tại M. Trên a có hai điểm A và B, trên b có hai điểm C và D
Đề bài
Cho hai đường thẳng \(a\) và \(b\) cắt nhau tại \(M\). Trên \(a\) có hai điểm \(A\) và \(B\), trên \(b\) có hai điểm \(C\) và \(D\) đều khác \(M\) sao cho \(\overrightarrow {MA} .\overrightarrow {MB} = \overrightarrow {MC} .\overrightarrow {MD} \,\,\). Chứng minh rằng bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.
Lời giải chi tiết

Gọi \((O)\) là đường tròn ngoại tiếp tam giác \(ABC\).
Gọi \(D'\) là giao điểm của \(b\) với \((O)\) ( \({D'} \ne C\)).
Theo giả thiết ta có \(\overrightarrow {MA} .\overrightarrow {MB} = \overrightarrow {MC} .\overrightarrow {M{D}}\)
\(\eqalign{
& \Rightarrow \,\,\overrightarrow {MC} .\overrightarrow {MD} = \overrightarrow {MC} .\overrightarrow {M{D'}} \cr 
& \Rightarrow \,\,\overrightarrow {MC} (\overrightarrow {MD} - \overrightarrow {M{D'}} ) = 0 \cr 
& \Rightarrow \,\,\overrightarrow {MC} .\,\overrightarrow {{D'}D} = 0\,\,\,\, \cr} \)
\(\Rightarrow \,\overrightarrow {{D'}D} = 0\) (Do \(M, C, D, D'\) cùng thuộc đường thẳng b nên \(\overrightarrow {MC} \) và \(\overrightarrow {{D'}D}\) không thể vuông góc với nhau)
\( \Rightarrow D \equiv {D'}\).
Vậy bốn điểm \(A, B, C, D\) cùng nằm trên một đường tròn.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            