Bài 10 trang 71 SGK Hình học 10 nâng cao


Cho tam giác ABC. Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác ABC. Chứng minh rằng

LG a

\(\cot A = {{{b^2} + {c^2} - {a^2}} \over {4S}}\) ( S là diện tích tam giác ABC)

Lời giải chi tiết:

Ta có

\(\eqalign{
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\,\,;\cr&S = {1 \over 2}bc\sin A \Rightarrow bc\sin A = 2S\cr 
& \Rightarrow \,\,\cot A = {{\cos A} \over {\sin A}} = {{{b^2} + {c^2} - {a^2}} \over {2bc\sin A}} \cr& = \frac{{{b^2} + {c^2} - {a^2}}}{{2.2S}}= {{{b^2} + {c^2} - {a^2}} \over {4S}} \cr} \)

LG b

\(\cot A + \cot B + \cot C = {{{a^2} + {b^2} + {c^2}} \over {4S}}\)

Lời giải chi tiết:

Tương tự câu a), ta có

\(\eqalign{
& \cot B = {{{a^2} + {c^2} - {b^2}} \over {4S}}\cr&\cot C = {{{a^2} + {b^2} - {c^2}} \over {4S}} \cr 
& \Rightarrow \,\,\cot A + \cot B + \cot C\cr& = {{{b^2} + {c^2} - {a^2}} \over {4S}} + {{{a^2} + {c^2} - {b^2}} \over {4S}} + {{{a^2} + {b^2} - {c^2}} \over {4S}} \cr 
&   = \frac{{{b^2} + {c^2} - {a^2} + {a^2} + {c^2} - {b^2} + {a^2} + {b^2} - {c^2}}}{{4S}}\cr&= \,{{{a^2} + {b^2} + {c^2}} \over {4S}} \cr} \)

Loigiaihay.com


Bình chọn:
3.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí