 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         Ôn tập chương II - Tích vô hướng của hai vectơ và ứng d..
                                                        Ôn tập chương II - Tích vô hướng của hai vectơ và ứng d..
                                                    Bài 10 trang 71 SGK Hình học 10 nâng cao>
Cho tam giác ABC. Chứng minh rằng
Cho tam giác ABC. Chứng minh rằng
LG a
\(\cot A = {{{b^2} + {c^2} - {a^2}} \over {4S}}\) ( S là diện tích tam giác ABC)
Lời giải chi tiết:
Ta có
\(\eqalign{
& \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}}\,\,;\cr&S = {1 \over 2}bc\sin A \Rightarrow bc\sin A = 2S\cr 
& \Rightarrow \,\,\cot A = {{\cos A} \over {\sin A}} = {{{b^2} + {c^2} - {a^2}} \over {2bc\sin A}} \cr& = \frac{{{b^2} + {c^2} - {a^2}}}{{2.2S}}= {{{b^2} + {c^2} - {a^2}} \over {4S}} \cr} \)
LG b
\(\cot A + \cot B + \cot C = {{{a^2} + {b^2} + {c^2}} \over {4S}}\)
Lời giải chi tiết:
Tương tự câu a), ta có
\(\eqalign{
& \cot B = {{{a^2} + {c^2} - {b^2}} \over {4S}}\cr&\cot C = {{{a^2} + {b^2} - {c^2}} \over {4S}} \cr 
& \Rightarrow \,\,\cot A + \cot B + \cot C\cr& = {{{b^2} + {c^2} - {a^2}} \over {4S}} + {{{a^2} + {c^2} - {b^2}} \over {4S}} + {{{a^2} + {b^2} - {c^2}} \over {4S}} \cr 
&   = \frac{{{b^2} + {c^2} - {a^2} + {a^2} + {c^2} - {b^2} + {a^2} + {b^2} - {c^2}}}{{4S}}\cr&= \,{{{a^2} + {b^2} + {c^2}} \over {4S}} \cr} \)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            