Bài 37.18 trang 113 SBT Vật Lí 12


Đề bài

Tại sao trong quặng urani có lẫn chì?

Xác định tuổi của quặng, trong đó cứ \(10\) nguyên tử urani có:

a) \(10\) nguyên tử chì.

b) \(2\) nguyên tử chì.

Phương pháp giải - Xem chi tiết

Sử dụng định luật phóng xạ: Số hạt nhân phóng xạ còn lại sau thời gian \(t\) là \(N = \dfrac{{{N_0}}}{{{2^{\dfrac{t}{T}}}}}\)

Lời giải chi tiết

Sau nhiều lần phóng xạ α và β, urani biến thành chì.

Cứ 1 nguyên tử urani phóng xạ cuối cùng biến thành 1 nguyên tử chì.

+ Số hạt nhân phóng xạ còn lại sau thời gian \(t\) là \(N = \dfrac{{{N_0}}}{{{2^{\dfrac{t}{T}}}}}\)

+ Số hạt nhân bị phóng xạ: \(\Delta N = {N_0} - N = \left( {1 - \dfrac{1}{{{2^{\dfrac{t}{T}}}}}} \right){N_0}\)

Vậy

\(\dfrac{{\Delta N}}{N} = \dfrac{{1 - \dfrac{1}{{{2^{\dfrac{t}{T}}}}}}}{{\dfrac{1}{{{2^{\dfrac{t}{T}}}}}}} = {2^{\dfrac{t}{T}}} - 1\)

a) \(\begin{array}{l}\dfrac{{\Delta N}}{N} = {2^{\dfrac{t}{T}}} - 1 = \dfrac{{10}}{{10}}\\ \Rightarrow {2^{\dfrac{t}{T}}} = 2 \Rightarrow \dfrac{t}{T} = 1 \Rightarrow t = T\end{array}\)

b) \(\begin{array}{l}\dfrac{{\Delta N}}{N} = {2^{\dfrac{t}{T}}} - 1 = \dfrac{2}{{10}}\\ \Rightarrow {2^{\dfrac{t}{T}}} = \dfrac{6}{5} \Rightarrow \dfrac{t}{T} = {\log _2}(\dfrac{6}{5})\\ \Rightarrow t = T{\log _2}(\dfrac{6}{5})\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Các bài liên quan: - Bài 37. Phóng xạ

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.