Bài 33 trang 115 Vở bài tập toán 6 tập 2


Giải bài 33 trang 115, 116 VBT toán 6 tập 2. Trên hình 27, ta có hai đường tròn (A; 3cm) và (B ; 2cm) cắt nhau tại C, D. AB = 4cm. Đường tròn tâm A, B lần lượt cắt đoạn thẳng AB tại K, I...

Đề bài

Trên hình 27, ta có hai đường tròn \((A;3cm)\) và \((B;2cm)\) cắt nhau tại \(C, D.\) \(AB = 4cm.\) Đường tròn tâm \(A,B\) lần lượt cắt đoạn thẳn \(AB\) tại \(K, I.\) 

a) Tính \(CA, CB, DA,DB.\)

b) \(I\) có phải là trung điểm của đoạn thẳng \(AB\) không?

c) Tính \(IK.\)

Phương pháp giải - Xem chi tiết

Đường tròn tâm \(O,\) bán kính \(R\) là hình gồm các điểm cách \(O\) một khoảng bằng \(R,\) kí hiệu \((O;R).\)

Sử dụng công thức cộng đoạn thẳng: Nếu \(M\) nằm giữa hai điểm \(A,B\) thì \(AM+MB=AB\)

Sử dụng: Nếu \(M\) là trung điểm của đoạn thẳng \(AB\) thì \(MA=MB=\dfrac{AB}{2}\)

Lời giải chi tiết

 

a) Vì hai đường tròn (A; 3cm) và (B; 2cm) cắt nhau tại C; D nên: 

Hai điểm \(C\) và \(D\) nằm trên đường tròn \((A; 3cm)\) nên \(CA = DA = 3cm\) 

Hai điểm \(C\) và \(D\) nằm trên đường tròn \((B; 2cm)\) nên \(CB = DB = 2cm\)

b) Đường tròn (B; 2cm) cắt đoạn AB tại I nên I nằm trên đường tròn (B; 2cm), suy ra BI = 2cm. 

Trên tia \(BA\) có: \(BI = 2cm, AB = 4cm\)

Suy ra \(BI<BA\) \((2cm < 4cm)\) nên điểm \(I\) nằm giữa \(A\) và \(B\)   (1).

Suy ra \(AI + IB = AB\) 

\(\Rightarrow AI = AB - IB = 4 - 2 = 2cm\)

Do đó: \(AI = BI \,(=2cm)\) (2)

Từ (1) và (2) suy ra \(I\) là trung điểm của đoạn thẳng \(AB.\)

c) Đường tròn (A; 3cm) cắt đoạn AB tại K nên K thuộc đường tròn (A ; 3cm) , suy ra AK = 3cm.  

Trên tia \(AB\) có \(AI = 2cm, AK = 3cm.\)

Vì \(AI < AK\) (\(2cm<3cm)\) nên điểm \(I\) nằm giữa hai điểm \(A\) và \(K.\)

Suy ra \(AI + IK = AK\)

\(\Rightarrow  IK = AK - AI = 3 - 2 = 1cm\)

Loigiaihay.com


Bình chọn:
4.4 trên 5 phiếu

Các bài liên quan: - Bài 8. Đường tròn

Luyện Bài tập trắc nghiệm môn Toán lớp 6 - Xem ngay

>> Học trực tuyến lớp 6 trên Tuyensinh247.com mọi lúc, mọi nơi với đầy đủ các môn: Toán, Văn, Anh, Lý, Sử, Sinh, Địa cùng các thầy cô nổi tiếng, dạy hay dễ hiểu


Gửi bài