Bài 7 trang 63 SGK Hình học 10


Tam giác đều ABC có đường cao AH. Khẳng định nào sau đây là đúng?

Đề bài

Tam giác đều \(ABC\) có đường cao \(AH\). Khẳng định nào sau đây là đúng?

A. \(\sin \widehat {BAH} = {{\sqrt 3 } \over 2}\)

B. \(\cos \widehat {BAH} = {1 \over {\sqrt 3 }}\)

C. \(\sin \widehat {ABC} = {{\sqrt 3 } \over 2}\)

D. \(\sin \widehat {AHC} = {1 \over 2}\)

Video hướng dẫn giải

Lời giải chi tiết

Tam giác ABC đều nên AH vừa là đường cao vừa là đường phân giác góc A.

\(\begin{array}{l}
\Rightarrow \widehat {BAH} = \frac{1}{2}\widehat {BAC} = \frac{1}{2}{.60^0} = {30^0}\\
\Rightarrow \sin \widehat {BAH} = \sin {30^0} = \frac{1}{2}\\
\Rightarrow A\,sai\\
\cos \widehat {BAH} = \cos {30^0} = \frac{{\sqrt 3 }}{2}\\
\Rightarrow B\,sai\\
\sin \widehat {ABC} = \sin {60^0} = \frac{{\sqrt 3 }}{2}\\
\Rightarrow C\,\text{đúng}\\
\sin \widehat {AHC} = \sin {90^0} = 1\\
\Rightarrow D\,sai
\end{array}\)

Chọn C

Loigiaihay.com


Bình chọn:
4.7 trên 13 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Ph/hs Tham Gia Nhóm Để Cập Nhật Điểm Thi, Điểm Chuẩn Miễn Phí