Bài 5 trang 62 SGK Hình học 10


Hãy nhắc lại định lí cosin trong tam giác. Từ các hệ thức này hãy tính cosA, cosB, cosC theo các cạnh của tam giác.

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Hãy nhắc lại định lí cosin trong tam giác. Từ các hệ thức này hãy tính \(\cos A, \cos B , \cos C\) theo các cạnh của tam giác.

Video hướng dẫn giải

Lời giải chi tiết

Định lí cosin:

Trong tam giác \(ABC\) có AB=c, BC=a, AC=b ta có:

\(\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.{\mathop{\rm cosA}\nolimits}\cr& \Rightarrow \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} \cr
& {b^2} = {c^2} + {a^2} - 2ca.{\mathop{\rm cosB}\nolimits}\cr& \Rightarrow {\mathop{\rm cosB}\nolimits} = {{{c^2} + {a^2} - {b^2}} \over {2ca}} \cr
& {c^2} = {a^2} + {b^2} - 2ab.{\mathop{\rm cosC}\nolimits}\cr& \Rightarrow {\mathop{\rm cosC}\nolimits} = {{{a^2} + {b^2} - {c^2}} \over {2ab}} \cr} \)

Loigiaihay.com


Bình chọn:
4.3 trên 16 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!