Bài 5 trang 62 SGK Hình học 10


Đề bài

Hãy nhắc lại định lí cosin trong tam giác. Từ các hệ thức này hãy tính \(\cos A, \cos B , \cos C\) theo các cạnh của tam giác.

Video hướng dẫn giải

Lời giải chi tiết

Định lí cosin:

Trong tam giác \(ABC\) có AB=c, BC=a, AC=b ta có:

\(\eqalign{
& {a^2} = {b^2} + {c^2} - 2bc.{\mathop{\rm cosA}\nolimits}\cr& \Rightarrow \cos A = {{{b^2} + {c^2} - {a^2}} \over {2bc}} \cr
& {b^2} = {c^2} + {a^2} - 2ca.{\mathop{\rm cosB}\nolimits}\cr& \Rightarrow {\mathop{\rm cosB}\nolimits} = {{{c^2} + {a^2} - {b^2}} \over {2ca}} \cr
& {c^2} = {a^2} + {b^2} - 2ab.{\mathop{\rm cosC}\nolimits}\cr& \Rightarrow {\mathop{\rm cosC}\nolimits} = {{{a^2} + {b^2} - {c^2}} \over {2ab}} \cr} \)

Loigiaihay.com


Bình chọn:
4.2 trên 13 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài