Bài 26 trang 66 SGK Hình học 10


Giải bài 26 trang 66 SGK Hình học 10. Tam giác ABC có A = (10, 5), B = (3, 2), C = (6, -5). Khẳng định nào sau đây là đúng?

Đề bài

Tam giác \(ABC\) có \(A = (10; 5), B = (3; 2), C = (6; -5)\). Khẳng định nào sau đây là đúng?

A. \(ABC\) là tam giác đều

B. \(ABC\) là tam giác vuông cân tại \(B\)

C. \(ABC\) là tam giác vuông cân tại \(A\)

D. \(ABC\) là tam giác có góc tù tại \(A\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

Tính các cạnh AB, AC, BC theo công thức \(AB = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2}} \) và nhận xét.

Lời giải chi tiết

\( \eqalign{& AB = \sqrt {{{(3 - 10)}^2} + {{(2 - 5)}^2}} = \sqrt {58} \cr & AC = \sqrt {{{(6 - 10)}^2} + {{( - 5 - 5)}^2}} \cr&= \sqrt {116} \cr & BC = \sqrt {{{(6 - 3)}^2} + {{( - 5 - 2)}^2}} \cr&= \sqrt {58} \cr} \)

Ta thấy,

AB=BC nên tam giác ABC cân tại B.

Lại có

\(\begin{array}{l}
A{B^2} + B{C^2} = {\left( {\sqrt {58} } \right)^2} + {\left( {\sqrt {58} } \right)^2} \\= 116\\
A{C^2} = {\left( {\sqrt {116} } \right)^2} = 116\\
\Rightarrow A{B^2} + B{C^2} = A{C^2}
\end{array}\)

Do đó tam giác ABC vuông tại B.

Vậy tam giác ABC vuông cân tại B.

Chọn B.

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 10 - Xem ngay

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài