Câu 36 trang 121 SGK Đại số và Giải tích 11 Nâng cao


Tính các tổng sau :

Lựa chọn câu để xem lời giải nhanh hơn

Tính các tổng sau :

LG a

Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng 18, số hạng thứ hai bằng 54 và số hạng cuối bằng 39 366;

Phương pháp giải:

- Tính \(q = \frac{{{u_2}}}{{{u_1}}}\)

- Tính số các số hạng của CSN theo công thức \({u_n} = {u_1}{q^{n - 1}}\)

- Tính tổng \[{S_n} = \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}}\]

Lời giải chi tiết:

Gọi q là công bội của cấp số nhân đã cho.

Ta có:  \(q = {{{u_2}} \over {{u_1}}} = {{54} \over {18}} = 3\)

Giả sử cấp số nhân có n số hạng ta có :

\(\eqalign{
& 39366 = {u_n} = {u_1}.{q^{n - 1}} = {18.3^{n - 1}} \cr 
& \Rightarrow {3^{n - 1}} = {{39366} \over {18}} = 2187 = {3^7} \cr&\Rightarrow n = 8 \cr 
& \Rightarrow {S_8} = {u_1}.{{1 - {q^8}} \over {1 - q}} = 18.{{1 - {3^8}} \over {1 - 3}} \cr&= 59040 \cr} \)

LG b

Tổng tất cả các số hạng của một cấp số nhân, biết rằng số hạng đầu bằng \({1 \over {256}}\) , số hạng thứ hai bằng \({{ - 1} \over {512}}\) và số hạng cuối bằng  \({1 \over {1048576}}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& q = {{{u_2}} \over {{u_1}}} = - {1 \over 2} \cr 
& {u_n} = {u_1}.{q^{n - 1}} \cr&\Rightarrow {1 \over {1048576}} = {1 \over {256}}.{\left( { - {1 \over 2}} \right)^{n - 1}} \cr 
& \Leftrightarrow {\left( { - \frac{1}{2}} \right)^{n - 1}} = \frac{1}{{4096}} = {\left( { - \frac{1}{2}} \right)^{12}} \cr&\Leftrightarrow n - 1 = 12 \Leftrightarrow n = 13\cr& \Rightarrow {S_{13}} = {1 \over {256}}.{{1 - {{\left( {{{ - 1} \over 2}} \right)}^{13}}} \over {1 - \left( { - {1 \over 2}} \right)}}\cr& = {{2731} \over {1048576}} \cr} \)

 Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Các bài liên quan: - Bài 4. Cấp số nhân

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài