Bài 87 trang 118 SBT Hình học 10 Nâng cao


Giải bài tập Bài 87 trang 118 SBT Hình học 10 Nâng cao

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Dùng định nghĩa parabol để lập phương trình của parabol có tiêu điểm \(F(2 ; 1)\) và đường chuẩn \(\Delta : x+y+1=0.\)

Lời giải chi tiết:

Kí hiệu \((P)\) là parabol có tiêu điểm \(F\) và đường chuẩn \(\Delta \).

\(\begin{array}{l}M(x ; y)  \in (P) \\  \Leftrightarrow    MF = d(M ; \Delta )  \\ \Leftrightarrow M{F^2} = {d^2}(M ; \Delta )\\ \Leftrightarrow   {(x - 2)^2} + {(y - 1)^2}\\ =  \dfrac{{{{(x + y + 1)}^2}}}{2}\\ \Leftrightarrow {x^2} + {y^2} - 2xy - 10x - 6y + 9 = 0.\end{array}\)

Vậy \((P)\) có phương trình : \({x^2} + {y^2} - 2xy - 10x - 6y + 9 = 0\).

LG b

Chứng minh rằng parabol \((P)\) có tiêu điểm \(F\left( { -  \dfrac{b}{{2a}} ;  \dfrac{{1 - {b^2} + 4ac}}{{4a}}} \right)\) và đường chuẩn \(\Delta : y +  \dfrac{{1 + {b^2} - 4ac}}{{4a}} = 0\) có phương trình \(y = a{x^2} + bx + c\).

Lời giải chi tiết:

Xét điểm tùy ý \(M(x ; y)  \in (P)\), hãy biến đổi điều kiện \(MF = d(M ; \Delta )\) qua tọa độ, dẫn đến phương trình \(y = a{x^2} + bx + c\).

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!