Bài 69 trang 124 SGK giải tích 12 nâng cao


Giải các phương trình sau:

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\(\eqalign{
& \,{\log ^2}{x^3} - 20\log \sqrt x + 1 = 0 \cr} \)       

Lời giải chi tiết:

Điều kiện: \(x> 0\)

\(\eqalign{
& {\log ^2}{x^3} - 20\log \sqrt x + 1 = 0 \cr& \Leftrightarrow {\left( {\log {x^3}} \right)^2} - 20.\log {x^{\frac{1}{2}}} + 1 = 0 \cr&\Leftrightarrow {\left( {3\log x} \right)^2} - 20.\frac{1}{2}\log x + 1 = 0 \cr 
& \Leftrightarrow 9{\log ^2}x - 10\log x + 1 = 0\cr& \Leftrightarrow \left[ \matrix{
\log x = 1 \hfill \cr 
\log x = {1 \over 9} \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 10 \hfill \cr 
x = {10^{{1 \over {9}}}} = \root 9 \of {10} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {10;\root 9 \of {10} } \right\}\)

Chú ý:

Có thể đặt \(t=\log x\) để giải phương trình như sau:

\(\begin{array}{l}
9{t^2} - 10t + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}
t = 1\\
t = \frac{1}{9}
\end{array} \right.\\
\Rightarrow \left[ \begin{array}{l}
\log x = 1\\
\log x = \frac{1}{9}
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 10\\
x = {10^{\frac{1}{9}}}
\end{array} \right.
\end{array}\)

LG b

\(\,{{{{\log }_2}x} \over {{{\log }_4}2x}} = {{{{\log }_8}4x} \over {{{\log }_{16}}8x}}\)

Lời giải chi tiết:

\({{{{\log }_2}x} \over {{{\log }_4}2x}} = {{{{\log }_8}4x} \over {{{\log }_{16}}8x}}\,\,\,\,\,\left( 1 \right)\)

Điều kiện: \(x > 0\), \(x \ne {1 \over 2},\,x \ne {1 \over 8}\)
Ta có: \({\log _4}2x = {{{{\log }_2}2x} \over {{{\log }_2}4}} = {{1 + {{\log }_2}x} \over 2}\)

\(\eqalign{
& {\log _8}4x = {{{{\log }_2}4x} \over {{{\log }_2}8}} = {{2 + {{\log }_2}x} \over 3} \cr 
& {\log _{16}}8x = {{{{\log }_2}8x} \over {{{\log }_2}16}} = {{3 + {{\log }_2}x} \over 4} \cr} \)

Đặt \(t = {\log _2}x\) thì (1) thành:

\(\dfrac{t}{{\frac{{1 + t}}{2}}} = \dfrac{{\frac{{2 + t}}{3}}}{{\frac{{3 + t}}{4}}}\)

\( \Leftrightarrow t.\frac{{3 + t}}{4} = \frac{{1 + t}}{2}.\frac{{2 + t}}{3}\)

\( \Leftrightarrow 6t\left( {3 + t} \right) = 4\left( {1 + t} \right)\left( {2 + t} \right)\)

\(\eqalign{
& \Leftrightarrow 18t + 6{t^2} = 8 + 12t + 4{t^2} \cr&\Leftrightarrow 2{t^2} + 6t - 8 = 0 \cr&\Leftrightarrow \left[ \matrix{
t = 1 \hfill \cr 
t = - 4 \hfill \cr} \right. \cr 
& \Rightarrow \left[ \matrix{
{\log _2}x = 1 \hfill \cr 
{\log _2}x = - 4 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr 
x = {2^{ - 4}} = {1 \over {16}} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {2;{1 \over {16}}} \right\}\)

Chú ý:

Có thể trình bày như sau:

LG c

\(\eqalign{& \,{\log _{9x}}27 - {\log _{3x}}243 = 0 \cr} \)      

Lời giải chi tiết:

Điều kiện: \(x > 0\); \(x \ne {1 \over 9},\,x \ne {1 \over 3}\)
Ta có: \({\log _{9x}}27 - {\log _{3x}}3 + {\log _9}243 = 0 \)

\(\Leftrightarrow {1 \over {{{\log }_{27}}9x}} - {1 \over {{{\log }_3}3x}} + {\log _{{3^2}}}{3^5} = 0\)

\(\eqalign{
& \Leftrightarrow {1 \over {{{\log }_{{3^3}}}9x}} - {1 \over {1 + {{\log }_3}x}} + \frac{1}{2}{\log _3}{3^5} = 0 \cr 
& \Leftrightarrow {3 \over {{{\log }_3}9x}} - {1 \over {1 + {{\log }_3}x}} + {5 \over 2} = 0 \cr 
& \Leftrightarrow {3 \over {2 + {{\log }_3}x}} - {1 \over {1 + {{\log }_3}x}} + {5 \over 2} = 0 \cr} \)

Đặt \({\log _3}x = t\)
Ta có phương trình: \({3 \over {t + 2}} - {1 \over {t + 1}} + {5 \over 2} = 0\)

\(\eqalign{
& \Rightarrow 6\left( {t + 1} \right) - 2\left( {t + 2} \right) + 5\left( {t + 2} \right)\left( {t + 1} \right) = 0 \cr 
&  \Leftrightarrow 6t + 6 - 2t - 4 + 5\left( {{t^2} + 3t + 2} \right) = 0 \cr&\Leftrightarrow 5{t^2} + 19t + 12 = 0\cr&\Leftrightarrow \left[ \matrix{
t = - 0,8 \hfill \cr 
t = - 3 \hfill \cr} \right.(TM) \cr&\Rightarrow \left[ \matrix{
{\log _3}x = - 0,8 \hfill \cr 
{\log _3}x = - 3 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {3^{ - 0,8}} \hfill \cr 
x = {3^{ - 3}} \hfill \cr} \right. \cr} \)

Vậy \(S = \left\{ {{3^{ - 3}};{3^{ - 0,8}}} \right\}\)

Loigiaihay.com


Bình chọn:
4 trên 6 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài