Bài 61 trang 136 SGK Đại số 10 nâng cao

Bình chọn:
3.6 trên 8 phiếu

Tìm tập xác định của mỗi hàm số sau:

Tìm tập xác định của mỗi hàm số sau:

a) \(y = \sqrt {(2x + 5)(1 - 2x)} \)

b) \(y = \sqrt {{{{x^2} + 5x + 4} \over {2{x^2} + 3x + 1}}} \)

Đáp án

a) Hàm số đã cho xác định

\(⇔ (2x + 5)(1 – 2x) ≥ 0\)

\( \Leftrightarrow  - {5 \over 2} \le x \le {1 \over 2}\)

Vậy tập xác định \(D = {\rm{[}} - {5 \over 2},{1 \over 2}{\rm{]}}\)

b) Hàm số đã cho xác định:

\(\eqalign{
& \Leftrightarrow {{{x^2} + 5x + 4} \over {2{x^2} + 3x + 1}} \ge 0 \Leftrightarrow {{(x + 1)(x + 4)} \over {(x + 1)(2x + 1)}} \ge 0 \cr
& \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
{{x + 4} \over {2x + 1}} \ge 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ne - 1 \hfill \cr
\left[ \matrix{
x \le - 4 \hfill \cr
x > - {1 \over 2} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x \le - 4 \hfill \cr
x > - {1 \over 2} \hfill \cr} \right. \cr} \) 

Vậy tập xác định của hàm số là: \(S = ( - \infty , - 4{\rm{]}} \cup ( - {1 \over 2}, + \infty )\)

Loigiaihay.com

Các bài liên quan: - Bài 7: Bất phương trình bậc hai

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng