Bài 56 trang 145 SGK Đại số 10 nâng cao


Giải các hệ bất phương trình

Lựa chọn câu để xem lời giải nhanh hơn

Giải các hệ bất phương trình

LG a.

\(\left\{ \matrix{
2{x^2} + 9x + 7 > 0 \hfill \cr 
{x^2} + x - 6 < 0 \hfill \cr} \right.\)

Phương pháp giải:

Giải từng bpt có trong hệ và kết hợp nghiệm.

Lời giải chi tiết:

Ta có:

\(\eqalign{
& 2{x^2} + 9x + 7 > 0 \Leftrightarrow \left[ \matrix{
x < - {7 \over 2} \hfill \cr 
x > - 1 \hfill \cr} \right. \cr 
& {x^2} + x - 6 < 0 \Leftrightarrow - 3 < x < 2 \cr} \)

Do đó

\(\left\{ \matrix{
2{x^2} + 9x + 7 > 0 \hfill \cr 
{x^2} + x - 6 < 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x < - {7 \over 2} \hfill \cr 
x > - 1 \hfill \cr} \right. \hfill \cr 
- 3 < x < 2 \hfill \cr} \right. \)

\( \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x < - \frac{7}{2}\\
- 3 < x < 2
\end{array} \right.\left( {VN} \right)\\
\left\{ \begin{array}{l}
x > - 1\\
- 3 < x < 2
\end{array} \right.
\end{array} \right. \)

\(\Leftrightarrow - 1 < x < 2\)

Vậy tập nghiệm của hệ là \(S = (-1, 2)\)

LG b.

\(\left\{ \matrix{
4{x^2} - 5x - 6 \le 0 \hfill \cr 
- 4{x^2} + 12x - 5 < 0 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
4{x^2} - 5x - 6 \le 0 \hfill \cr 
- 4{x^2} + 12x - 5 < 0 \hfill \cr} \right.\)

\(\Leftrightarrow \left\{ \matrix{
- {3 \over 4} \le x \le 2 \hfill \cr 
\left[ \matrix{
x < {1 \over 2} \hfill \cr 
x > {5 \over 2} \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow - {3 \over 4} \le x < {1 \over 2}\)

Vậy tập nghiệm của hệ là \(S = {\rm{[}} - {3 \over 4};{1 \over 2}{\rm{]}}\)

LG c.

\(\left\{ \matrix{
- 2{x^2} - 5x + 4 \le 0 \hfill \cr 
- {x^2} - 3x + 10 \ge 0 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \left\{ \matrix{
- 2{x^2} - 5x + 4 \le 0 \hfill \cr 
- {x^2} - 3x + 10 \ge 0 \hfill \cr} \right.\cr & \Leftrightarrow \left\{ \matrix{
2{x^2} + 5x - 4 \ge 0 \hfill \cr 
{x^2} + 3x - 10 \le 0 \hfill \cr} \right. \cr 
& \left\{ \matrix{
\left[ \matrix{
x \le {{ - 5 - \sqrt {57} } \over 4} \hfill \cr 
x \ge {{ - 5 + \sqrt {57} } \over 4} \hfill \cr} \right. \hfill \cr 
- 5 \le x \le 2 \hfill \cr} \right.\cr & \Leftrightarrow \left[ \matrix{
- 5 \le x \le {{ - 5 - \sqrt {57} } \over 4} \hfill \cr 
{{ - 5 + \sqrt {57} } \over 4} \le x \le 2 \hfill \cr} \right. \cr} \) 

Vậy \(S = {\rm{[}} - 5,{{ - 5 - \sqrt {57} } \over 4}{\rm{]}} \cup {\rm{[}}{{ - 5 + \sqrt {57} } \over 4};2{\rm{]}}\)

LG d.

\(\left\{ \matrix{
2{x^2} + x - 6 > 0 \hfill \cr 
3{x^2} - 10x + 3 > 0 \hfill \cr} \right.\)

Lời giải chi tiết:

Ta có:

\(\left\{ \matrix{
2{x^2} + x - 6 > 0 \hfill \cr 
3{x^2} - 10x + 3 > 0 \hfill \cr} \right. \)

\(\Leftrightarrow \left\{ \matrix{
\left[ \matrix{
x < - 2 \hfill \cr 
x > {3 \over 2} \hfill \cr} \right. \hfill \cr 
\left[ \matrix{
x < {1 \over 3} \hfill \cr 
x > 3 \hfill \cr} \right. \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x < - 2 \hfill \cr 
x > 3 \hfill \cr} \right.\)

 

Vậy \(S = ( - \infty , - 2) \cup (3, + \infty )\)

Loigiaihay.com


Bình chọn:
3.9 trên 9 phiếu

Các bài liên quan: - Bài 7: Bất phương trình bậc hai

>> Học trực tuyến Lớp 10 tại Tuyensinh247.com, Cam kết giúp học sinh học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài