Bài 60 sách giải tích 12 nâng cao trang 117


a) Chứng minh rằng đồ thị của hai hàm số đối xứng với nhau qua trục tung. b) Chứng minh rằng đồ thị của hai hàm số đối xứng với nhau qua trục hoành.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng minh rằng đồ thị của hai hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\) đối xứng với nhau qua trục tung.

Phương pháp giải:

Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị của hàm số \(y = {a^x};\,y = {\left( {{1 \over a}} \right)^x}\), \(M\left( {{x_o},{y_o}} \right)\) là một điểm bất kì.

Khi đó điểm đối xứng với M qua trục tung là \(M'\left( { - {x_o},{y_o}} \right)\).

Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {a^{{x_o}}}= {\left( {{a^{ - 1}}} \right)^{ - {x_o}}} \)

\(\Leftrightarrow {y_o}={\left( {{1 \over a}} \right)^{ - {x_o}}} \Leftrightarrow M' \in \left( {{G_2}} \right)\)

Điều đó chứng tỏ \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục tung.

LG b

Chứng minh rằng đồ thị của hai hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\) đối xứng với nhau qua trục hoành.

Lời giải chi tiết:

Gọi \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) lần lượt là đồ thị của hàm số \(y = {\log _a}x;\,\,y = {\log _{{1 \over a}}}x\)
Lấy \(M\left( {{x_o},{y_o}} \right)\) tùy ý.

Điểm đối xứng với M qua trục hoành là \(M'\left( {{x_o}, - {y_o}} \right)\).

Ta có: \(M \in \left( {{G_1}} \right) \Leftrightarrow {y_o} = {\log _a}{x_o} =  - {\log _{{1 \over a}}}{x_o} \)

\(\Leftrightarrow  - {y_o} = {\log _{{1 \over a}}}{x_o} \Leftrightarrow M' \in \left( {{G_2}} \right)\)

Vậy \(\left( {{G_1}} \right)\) và \(\left( {{G_2}} \right)\) đối xứng với nhau qua trục hoành.

Loigiaihay.com


Bình chọn:
3.5 trên 4 phiếu

Các bài liên quan: - Bài 6. Hàm số lũy thừa

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài