Bài 57 sách giải tích 12 nâng cao trang 117


Trên hình bên cho hai đường cong (C1) (đường nét liền) và (C2) (đường nét đứt) được vẽ trên cùng một mặt phẳng tọa độ. Biết rằng mỗi đường cong ấy là đồ thị của ột trong hai hàm số lũy thừa và . Chỉ dựa vào tính chất của lũy thừa, có thể nhận biết đường cong nào là đồ thị của hàm số nào được không? Hãy nêu rõ lập luận.

Đề bài

Trên hình bên cho hai đường cong (\({C_1}\)) (đường nét liền) và (\({C_2}\)) (đường nét đứt) được vẽ trên cùng một mặt phẳng tọa độ. Biết rằng mỗi đường cong ấy là đồ thị của một trong hai hàm số lũy thừa \(y = {x^{ - 2}}\) và \(y = {x^{ - {1 \over 2}}}\,\,\left( {x > 0} \right)\). Chỉ dựa vào tính chất của lũy thừa, có thể nhận biết đường cong nào là đồ thị của hàm số nào được không? Hãy nêu rõ lập luận.

Phương pháp giải - Xem chi tiết

Nhận xét giá trị hàm số \(y = {x^{ - 2}}\) và \(y = {x^{ - {1 \over 2}}}\,\,\left( {x > 0} \right)\) và đối chiếu đồ thị.

Lời giải chi tiết

Với \(x > 1\) ta có:

\( - 2 <  - \frac{1}{2} \Rightarrow {x^{ - 2}} < {x^{ - \frac{1}{2}}}\) nên đồ thị hàm số \(y = {x^{ - 2}}\) nằm dưới đồ thị hàm số \(y = {x^{ - \frac{1}{2}}}\)

Với \(0 < x < 1\) ta có:

\( - 2 <  - \frac{1}{2} \Rightarrow {x^{ - 2}} > {x^{ - \frac{1}{2}}}\) nên đồ thị hàm số \(y = {x^{ - 2}}\) nằm trên đồ thị hàm số \(y = {x^{ - \frac{1}{2}}}\)

Đối chiếu hai đường cong trong hình ta thấy,

+ Trong khoảng \(\left( {1; + \infty } \right)\) thì \(\left( {{C_1}} \right)\) nằm dưới \(\left( {{C_2}} \right)\)

+ Trong khoảng \(\left( {0;1} \right)\) thì \(\left( {{C_1}} \right)\) nằm trên \(\left( {{C_2}} \right)\)

Vậy \(\left( {{C_1}} \right)\) là đồ thị hàm số \(y = {x^{ - 2}}\)

\(\left( {{C_2}} \right)\) là đồ thị hàm số \(y = {x^{ - \frac{1}{2}}}\)

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu

Các bài liên quan: - Bài 6. Hàm số lũy thừa

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài