Bài 50 trang 49 SGK giải tích 12 nâng cao


Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:

LG a

\(y = {{x + 1} \over {x - 1}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ 1 \right\}\)
 \(\mathop {\lim }\limits_{x \to {1^ + }} y =  + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) nên \(x = 1\) là tiệm cận đứng.

Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty } y = 1\) nên \(y = 1\) là tiệm cận ngang.

\(y = {{1.(-1)-1.1} \over {{{\left( {x - 1} \right)}^2}}} = {{ - 2} \over {{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\)

Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)

Hàm số không có cực trị.
Đồ thị hàm số cắt trục tung tại điểm \((0;-1)\) cắt trục hoành tại điểm \((-1;0)\)
Đồ thị nhận giao điểm hai tiệm cận \(I(1;1)\) làm tâm đối xứng.

LG b

\(y = {{2x + 1} \over {1 - 3x}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ {{1 \over 3}} \right\}\)
\(\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ + }} y =  - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ - }} y =  + \infty \) nên \(x = {1 \over 3}\) là tiệm cận đứng.

Vì \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  - \infty }y  =  - {2 \over 3}\) nên \(y =  - {2 \over 3}\) là tiệm cận ngang.

\(y = {{2.1-(-3).1} \over {{{\left( {1 - 3x} \right)}^2}}} = {5 \over {{{\left( {1 - 3x} \right)}^2}}} > 0\) với mọi \(x \ne {1 \over 3}\)

   

Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;{1 \over 3}} \right)\) và \(\left( {{1 \over 3}; + \infty } \right)\)

Hàm số không có cực trị.
Đồ thị cắt trục tung tại điểm \((0;1)\) và cắt trục hoành tại điểm \(\left( { - {1 \over 2};0} \right)\).
Đồ thị nhận giao điểm hai tiệm cận \(I\left( {{1 \over 3};{-2 \over 3}} \right)\) làm tâm đối xứng.

Loigiaihay.com


Bình chọn:
3.8 trên 4 phiếu
  • Bài 51 trang 49 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Chứng minh rằng giao điểm I của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị. c) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình:

  • Bài 52 trang 50 SGK giải tích 12 nâng cao

    Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:

  • Bài 53 trang 50 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số b) Viết phương trình tiếp tuyến của đồ thị hám số đã cho tại giao điểm A của đồ thị với trục tung. c) Viết phương trinh tiếp tuyến của đồ thị song song với tiếp tuyến tại điểm A.

  • Bài 54 trang 50 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số b) Từ đồ thị (H) suy ra cách vẽ đồ thị của hàm số

  • Bài 55 trang 50 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số b) Viết phương trình tiếp tuyến của đồ thị hàm số đã cho biết rằng tiếp tuyến đó đi qua điểm (3;3).

  • Bài 56 trang 50 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số b) Từ đồ thị (C) suy ra cách vẽ đồ thị của hàm số

  • Bài 49 trang 49 SGK giải tích 12 nâng cao

    a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số : b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài