
Khảo sát sự biến thiên và vẽ đồ thị hàm số sau:
LG a
\(y = {{x + 1} \over {x - 1}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ 1 \right\}\)
\(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty ;\,\,\mathop {\lim }\limits_{x \to {1^ - }} y = - \infty \) nên \(x = 1\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty } y = 1\) nên \(y = 1\) là tiệm cận ngang.
\(y = {{1.(-1)-1.1} \over {{{\left( {x - 1} \right)}^2}}} = {{ - 2} \over {{{\left( {x - 1} \right)}^2}}} < 0\) với mọi \(x \ne 1\)
Hàm số nghịch biến trên mỗi khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\)
Hàm số không có cực trị.
Đồ thị hàm số cắt trục tung tại điểm \((0;-1)\) cắt trục hoành tại điểm \((-1;0)\)
Đồ thị nhận giao điểm hai tiệm cận \(I(1;1)\) làm tâm đối xứng.
LG b
\(y = {{2x + 1} \over {1 - 3x}}\)
Lời giải chi tiết:
TXĐ: \(D =\mathbb R\backslash \left\{ {{1 \over 3}} \right\}\)
\(\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ + }} y = - \infty ;\,\mathop {\lim }\limits_{x \to {{\left( {{1 \over 3}} \right)}^ - }} y = + \infty \) nên \(x = {1 \over 3}\) là tiệm cận đứng.
Vì \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to - \infty }y = - {2 \over 3}\) nên \(y = - {2 \over 3}\) là tiệm cận ngang.
\(y = {{2.1-(-3).1} \over {{{\left( {1 - 3x} \right)}^2}}} = {5 \over {{{\left( {1 - 3x} \right)}^2}}} > 0\) với mọi \(x \ne {1 \over 3}\)
Hàm số đồng biến trên mỗi khoảng \(\left( { - \infty ;{1 \over 3}} \right)\) và \(\left( {{1 \over 3}; + \infty } \right)\)
Hàm số không có cực trị.
Đồ thị cắt trục tung tại điểm \((0;1)\) và cắt trục hoành tại điểm \(\left( { - {1 \over 2};0} \right)\).
Đồ thị nhận giao điểm hai tiệm cận \(I\left( {{1 \over 3};{-2 \over 3}} \right)\) làm tâm đối xứng.
Loigiaihay.com
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số: b) Chứng minh rằng giao điểm I của đường tiệm cận của đồ thị là tâm đối xứng của đồ thị. c) Tùy theo các giá trị của m, hãy biện luận số nghiệm của phương trình:
Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số b) Viết phương trình tiếp tuyến của đồ thị hám số đã cho tại giao điểm A của đồ thị với trục tung. c) Viết phương trinh tiếp tuyến của đồ thị song song với tiếp tuyến tại điểm A.
a) Khảo sát sự biến thiên và vẽ đồ thị (H) của hàm số b) Từ đồ thị (H) suy ra cách vẽ đồ thị của hàm số
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số b) Viết phương trình tiếp tuyến của đồ thị hàm số đã cho biết rằng tiếp tuyến đó đi qua điểm (3;3).
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số b) Từ đồ thị (C) suy ra cách vẽ đồ thị của hàm số
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số : b) Chứng minh rằng giao điểm I của hai đường tiệm cận của đồ thị là tâm đối xứng của đồ thị.
>> Xem thêm
Cảm ơn bạn đã sử dụng Loigiaihay.com. Đội ngũ giáo viên cần cải thiện điều gì để bạn cho bài viết này 5* vậy?
Vui lòng để lại thông tin để ad có thể liên hệ với em nhé!
Họ và tên:
Email / SĐT: