Bài 42 trang 209 SGK giải tích 12 nâng cao


Bằng cách biển diễn hình học các số phức 2 + i, 5+ i và 8 + i, hãy chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Bằng cách biểu diễn hình học các số phức 2 + i và 3 + i, hãy chứng minh rằng nếu \(\tan a = {1 \over 2},\,\tan b = {1 \over 3}\)với \(a,b \in \left( {0;{\pi  \over 2}} \right)\) thì \(a + b = {\pi  \over 4}\).

Phương pháp giải:

Tính acgumen của zz' bằng hai cách rồi suy ra đpcm.

Lời giải chi tiết:

Biểu diễn hình học \(2 + i, 3 + i\) theo thứ tự bới M và N trong mặt phẳng phức

Ta có: \(\tan \left( {Ox,\,OM} \right) = {1 \over 2} = \tan a\)

\(\tan \left( {Ox,\,ON} \right) = {1 \over 3} = \tan b\)

Xét \(z.z' = (2 + i).(3 + i) = 5(1 + i) \)

\(= 5\sqrt 2 \left( {\cos {\pi  \over 4} + i\sin {\pi  \over 4}} \right)\)

Số \(zz'\) có acgumen là \({{\pi  \over 4}}\).

Mà zz' cũng có acgumen là a+b.

Suy ra \(a + b = {\pi  \over 4}\)

LG b

Bằng cách biển diễn hình học các số phức 2 + i, 5+ i và 8 + i, hãy chứng minh rằng nếu \(\tan a = {1 \over 2},\,\tan b = {1 \over 5},\,\tan c = {1 \over 8}\) với \(a,b,c \in \left( {0;{\pi  \over 2}} \right)\) thì \(a + b + c = {\pi  \over 4}\).

Lời giải chi tiết:

\({z_1} = 2 + i\) có một acgumen là a với \(\tan a = {1 \over 2}\)

\({z_2} = 5 + i\) có một acgumen là b với \(\tan b = {1 \over 5}\)

\({z_3} = 8 + i\) có một acgumen là c với \(\tan c = {1 \over 8}\)

Xét \(z = {z_1}{z_2}{z_3} = \left( {2 + i} \right)\left( {5 + i} \right)\left( {8 + i} \right) \) \(= 65\left( {1 + i} \right)\)

\(= 65\sqrt 2 \left( {{{\sqrt 2 } \over 2} + i{{\sqrt 2 } \over 2}} \right) \) \(= 65\sqrt 2 \left( {\cos {\pi  \over 4} + i\sin {\pi  \over 4}} \right)\)

\(z\) có acgumen là \({\pi  \over 4}\), suy ra \(a + b + c = {\pi  \over 4}\)

  Loigiaihay.com


Bình chọn:
3.3 trên 3 phiếu

Các bài liên quan: - Ôn tập chương IV - Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài