Bài 38 trang 209 SGK giải tích 12 nâng cao


Chứng minh rằng

Đề bài

Chứng minh rằng \(\left| z \right| = \left| {\rm{w}} \right| = 1\) thì số \({{z + {\rm{w}}} \over {1 + z{\rm{w}}}}\) là số thực (giả sử \(1 + z{\rm{w}} \ne 0\)).

Phương pháp giải - Xem chi tiết

Sử dụng tính chất:

Số phức z=a+bi là số thực nếu \(\overline z  = z\)

Lời giải chi tiết

Ta có \(z.\overline z  = {\left| z \right|^2} = 1 \Rightarrow \overline z  = {1 \over z}\). Tương tự \(\overline {\rm{w}}  = {1 \over {\rm{w}}}\)

Do đó \(\overline {\left( {{{z + {\rm{w}}} \over {1 + z{\rm{w}}}}} \right)}  = {{\overline z  + \overline {\rm{w}} } \over {1 + \overline z .\overline {\rm{w}} }} = {{{1 \over z} + {1 \over {\rm{w}}}} \over {1 + {1 \over z}.{1 \over {\rm{w}}}}} = {{z + {\rm{w}}} \over {1 + z{\rm{w}}}}\).

Suy ra \({{z + {\rm{w}}} \over {1 + z{\rm{w}}}}\) là số thực.

Cách khác:

Giả sử z=a+bi,w=a'+b'i với a2+b2=a'2+b'2=1 và 1+zw ≠ 0

Vì |z| = 1 nên z.z=1

Khi đó, ta có:

Xét phần ảo ở trên tử số ta có: (b+b' )(1+aa'-bb' )-(a+a' )(a' b+ab' )

=b+baa'-b2b'+b'+b' aa'-bb'2-aa' b-a2 b'-a'2 b-a'ab'

=b+b'-b' (a2+b2 )-b(b'2+a'2 )=b+b'-b'-b=0

Loigiaihay.com


Bình chọn:
3.2 trên 5 phiếu

Các bài liên quan: - Ôn tập chương IV - Số phức

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài