Bài 41 trang 209 SGK giải tích 12 nâng cao

Bình chọn:
3.4 trên 5 phiếu

Từ câu a), hãy suy ra dạng lượng giác của z.

Bài 41. Cho \(z = \left( {\sqrt 6  + \sqrt 2 } \right) + i\left( {\sqrt 6  - \sqrt 2 } \right)\)

a) Viết \({z^2}\) dưới dạng đại số và dưới dạng lượng giác;

b) Từ câu a), hãy suy ra dạng lượng giác của z.

Giải

\(\eqalign{  & a)\,{z^2} = {\left( {\sqrt 6  + \sqrt 2 } \right)^2} - {\left( {\sqrt 6  - \sqrt 2 } \right)^2} + 2i\left( {\sqrt 6  + \sqrt 2 } \right)\left( {\sqrt 6  - \sqrt 2 } \right)  \cr  & \,\,\,\,\,\,\,\,\,\,\, = 4\sqrt {12}  + 2i\left( {6 - 2} \right) = 8\sqrt 3  + 8i = 16\left( {\cos {\pi  \over 6}+i\sin {\pi  \over 6}} \right) \cr} \)

 b) Theo ứng dụng 2 của công thức Moa – vrơ, để ý rằng phần thực và phần ảo của z đều dương, suy ra \(z = 4\left( {\cos {\pi  \over {12}} + i\sin {\pi  \over {12}}} \right)\)

loigiaihay.com

>>Học trực tuyến luyện thi THPTQG, Đại học 2019, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu



Các bài liên quan