Bài 41 trang 209 SGK giải tích 12 nâng cao


Từ câu a), hãy suy ra dạng lượng giác của z.

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(z = \left( {\sqrt 6  + \sqrt 2 } \right) + i\left( {\sqrt 6  - \sqrt 2 } \right)\)

LG a

Viết \({z^2}\) dưới dạng đại số và dưới dạng lượng giác;

Lời giải chi tiết:

\(\eqalign{  &{z^2} \cr &= {\left( {\sqrt 6  + \sqrt 2 } \right)^2} - {\left( {\sqrt 6  - \sqrt 2 } \right)^2} \cr &+ 2i\left( {\sqrt 6  + \sqrt 2 } \right)\left( {\sqrt 6  - \sqrt 2 } \right)  \cr  & = 4\sqrt {12}  + 2i\left( {6 - 2} \right) = 8\sqrt 3  + 8i \cr &= 16\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right) \cr &=16\left( {\cos {\pi  \over 6}+i\sin {\pi  \over 6}} \right) \cr} \)

LG b

Từ câu a), hãy suy ra dạng lượng giác của z.

Lời giải chi tiết:

Theo ứng dụng 2 của công thức Moa – vrơ, để ý rằng phần thực và phần ảo của z đều dương, suy ra \(z = 4\left( {\cos {\pi  \over {12}} + i\sin {\pi  \over {12}}} \right)\)

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

Các bài liên quan: - Ôn tập chương IV - Số phức

>> Luyện thi TN THPT & ĐH năm 2022 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.


Hỏi bài