Bài 41 trang 209 SGK giải tích 12 nâng cao


Từ câu a), hãy suy ra dạng lượng giác của z.

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(z = \left( {\sqrt 6  + \sqrt 2 } \right) + i\left( {\sqrt 6  - \sqrt 2 } \right)\)

LG a

Viết \({z^2}\) dưới dạng đại số và dưới dạng lượng giác;

Lời giải chi tiết:

\(\eqalign{  &{z^2} \cr &= {\left( {\sqrt 6  + \sqrt 2 } \right)^2} - {\left( {\sqrt 6  - \sqrt 2 } \right)^2} \cr &+ 2i\left( {\sqrt 6  + \sqrt 2 } \right)\left( {\sqrt 6  - \sqrt 2 } \right)  \cr  & = 4\sqrt {12}  + 2i\left( {6 - 2} \right) = 8\sqrt 3  + 8i \cr &= 16\left( {\frac{{\sqrt 3 }}{2} + \frac{1}{2}i} \right) \cr &=16\left( {\cos {\pi  \over 6}+i\sin {\pi  \over 6}} \right) \cr} \)

LG b

Từ câu a), hãy suy ra dạng lượng giác của z.

Lời giải chi tiết:

Theo ứng dụng 2 của công thức Moa – vrơ, để ý rằng phần thực và phần ảo của z đều dương, suy ra \(z = 4\left( {\cos {\pi  \over {12}} + i\sin {\pi  \over {12}}} \right)\)

Loigiaihay.com


Bình chọn:
3.4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 12 - Xem ngay

Group Ôn Thi ĐGNL & ĐGTD Miễn Phí