 Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                                                
                            Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
                         Ôn tập chương IV - Số phức
                                                        Ôn tập chương IV - Số phức
                                                    Bài 39 trang 209 SGK giải tích 12 nâng cao>
Giải các phương trình sau trên C:
Giải các phương trình sau trên C:
LG a
\(\eqalign{{\left( {z + 3 - i} \right)^2} - 6\left( {z + 3 - i} \right) + 13 = 0}\)
Phương pháp giải:
- Đặt ẩn phụ \({\rm{w}} = z + 3 - i\).
- Giải phương trình mới tìm w, từ đó suy ra z.
Lời giải chi tiết:
Đặt \({\rm{w}} = z + 3 - i\) ta được phương trình:
\(\eqalign{ & {{\rm{w}}^2} - 6{\rm{w}}+ 13 = 0 \cr &\Leftrightarrow {\left( {{\rm{w}} - 3} \right)^2} = - 4 = 4{i^2} \cr & \Leftrightarrow \left[ \matrix{ {\rm{w}} = 3 + 2i \hfill \cr {\rm{w}} = 3 - 2i \hfill \cr} \right. \cr &\Leftrightarrow \left[ \matrix{ z + 3 - i = 3 + 2i \hfill \cr z + 3 - i = 3 - 2i \hfill \cr} \right. \cr &\Leftrightarrow \left[ \matrix{ z = 3i \hfill \cr z = - i \hfill \cr} \right. \cr} \)
Vậy \(S = \left\{ { - i;3i} \right\}\)
LG b
\(\eqalign{\left( {{{iz + 3} \over {z - 2i}}} \right)^2 - 3{{iz + 3} \over {z - 2i}} - 4 = 0;} \)
Phương pháp giải:
- Đặt ẩn phụ \({\rm{w}} = {{iz + 3} \over {z - 2i}}\)
- Giải phương trình mới tìm w, từ đó suy ra z.
Lời giải chi tiết:
Đặt \({\rm{w}} = {{iz + 3} \over {z - 2i}}\) ta được phương trình: \({{\rm{w}}^2} - 3{\rm{w}} - 4 = 0 \Leftrightarrow \left[ \matrix{ {\rm{w}} = - 1 \hfill \cr {\rm{w}} = 4 \hfill \cr} \right.\)
Với \({\rm{w}} = -1\) ta có \({{iz + 3} \over {z - 2i}} = - 1 \Leftrightarrow iz + 3 = - z + 2i\)
\( \Leftrightarrow \left( {i + 1} \right)z = - 3 + 2i \) \(\Leftrightarrow z = {{ - 3 + 2i} \over {1 + i}} = {{\left( { - 3 + 2i} \right)\left( {1 - i} \right)} \over 2} = {{ - 1 + 5i} \over 2}\)
Với \({\rm{w}} = 4\) ta có \({{iz + 3} \over {z - 2i}} = 4\) \( \Leftrightarrow iz + 3 = 4z - 8i\) \( \Leftrightarrow \left( {4 - i} \right)z = 3 + 8i\)
\( \Leftrightarrow z = {{3 + 8i} \over {4 - i}} = {{\left( {3 + 8i} \right)\left( {4 + i} \right)} \over {17}} = {{4 + 35i} \over {17}}\)
Vậy \(S = \left\{ {{{ - 1 + 5i} \over 2};{{4 + 35i} \over {17}}} \right\}\)
LG c
\({\left( {{z^2} + 1} \right)^2} + {\left( {z + 3} \right)^2} = 0.\)
Phương pháp giải:
Biến đổi phương trình về dạng tích.
Lời giải chi tiết:
\({\left( {{z^2} + 1} \right)^2} + {\left( {z + 3} \right)^2} =0\) \(\Leftrightarrow {\left( {{z^2} + 1} \right)^2} - {\left[ {i\left( {z + 3} \right)} \right]^2}=0\)
\( \Leftrightarrow \left( {{z^2} + 1 + i\left( {z + 3} \right)} \right)\left( {{z^2} + 1 - i\left( {z + 3} \right)} \right) = 0\)
\(\Leftrightarrow\left[ \matrix{ {z^2} + 1 + i\left( {z + 3} \right) = 0\,\,\left( 1 \right) \hfill \cr {z^2} + 1 - i\left( {z + 3} \right) = 0\,\,\,\left( 2 \right) \hfill \cr} \right.\)
\(\left( 1 \right) \Leftrightarrow {z^2} + iz + 1 + 3i = 0\);
\(\Delta = {i^2} - 4\left( {1 + 3i} \right) = - 5 - 12i \) \(= {\left( {2 - 3i} \right)^2}\)
Phương trình có hai nghiệm là
\(\left\{ \begin{array}{l}
{z_1} = \frac{{i + 2 + 3i}}{2} = 1 + 2i\\
{z_2} = \frac{{i - 2 - 3i}}{2} = - 1 - i
\end{array} \right.\)
\(\left( 2 \right) \Leftrightarrow {z^2} - iz + 1 - 3i = 0\);
\(\Delta = - 5 + 12i = {\left( {2 + 3i} \right)^2}\)
Phương trình có hai nghiệm là \({z_3} = 1 + 2i\) và \({z_4} = - 1 - i\)
Vậy \(S = \left\{ {1 - 2i; - 1 + i;1 + 2i; - 1 - i} \right\}\)
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            