Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Bài 4. Thể tích của khối đa diện
Bài 18 trang 28 SGK Hình học 12 Nâng cao>
Tính thể tích của khối lăng trụ n-giác đều có tất cả các cạnh đều bằng a.
Đề bài
Tính thể tích của khối lăng trụ \(n\)-giác đều có tất cả các cạnh đều bằng \(a\).
Phương pháp giải - Xem chi tiết
Sử dụng công thức tính thể tích lăng trụ V=Bh.
Lời giải chi tiết

Gọi \({A_1}{A_2}...{A_n}\) là đáy của khối lăng trụ \(n\)-giác đều và \(O\) là tâm của đáy.
Gọi \(I\) là trung điểm của \({A_1}{A_2}\) ta có \(OI \bot {A_1}{A_2}\).
Trong \(\Delta {A_1}IO\): \(\cot \widehat {{A_1}OI} = {{OI} \over {{A_1}I}} \)
\( \Rightarrow OI = {A_1}I\cot \widehat {{A_1}OI}\)
Mà \({A_1}I = \frac{1}{2}{A_1}{A_2} = \frac{a}{2}\) và \(\widehat {{A_1}OI} = \frac{1}{2}\widehat {{A_1}O{A_2}} = \frac{1}{2}.\frac{{2\pi }}{n} = \frac{\pi }{n}\) nên \(OI = \frac{a}{2}.\cot \frac{\pi }{n}\)
\( \Rightarrow {S_{{A_1}O{A_2}}} = \frac{1}{2}OI.{A_1}{A_2}\) \( = \frac{1}{2}.\frac{a}{2}\cot \frac{\pi }{n}.a = \frac{{{a^2}}}{4}\cot \frac{\pi }{n}\)
Diện tích đáy của khối lăng trụ đều là \( {S} = n.{S_{{A_1}O{A_2}}} = \frac{{n{a^2}}}{4}\cot \frac{\pi }{n}\)
Chiều cao của khối lăng trụ đều là \(a\) nên thể tích của nó là:
\( V = Bh = \frac{{n{a^2}}}{4}\cot \frac{\pi }{n}.a = \frac{{n{a^3}}}{4}\cot \frac{\pi }{n}\)
Loigiaihay.com




