Giải SBT toán hình học và đại số 10 nâng cao
Bài 4. Phương trình và hệ phương trình bậc nhất nhiều ẩn
Câu 3.39 trang 64 SBT Đại số 10 Nâng cao>
Giải bài tập Câu 3.39 trang 64 SBT Đại số 10 Nâng cao
Giải và biện luận các hệ phương trình theo tham số a :
LG a
\(\left\{ {\begin{array}{*{20}{c}}{ax + 2y = 1}\\{x + \left( {a - 1} \right)y = a}\end{array}} \right.\)
Lời giải chi tiết:
Ta có: \(D = \left( {{\rm{a}} + 1} \right)\left( {{\rm{a}} - 2} \right);\) \({D_x} = - \left( {{\rm{a}} + 1} \right);\) \({D_y} = \left( {{\rm{a}} - 1} \right)\left( {{\rm{a}} + 1} \right).\)
• Với a ≠ -1 và a ≠ 2 thì D ≠ 0, hệ có nghiệm duy nhất \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{{ - 1}}{{a - 2}}}\\{y = \dfrac{{a - 1}}{{a - 2}}}\end{array}} \right.\)
• Với a = -1, hệ đã cho tương đương với phương trình –x + 2y = 1 nên có vô số nghiệm \(\left\{ {\begin{array}{*{20}{c}}{x \in R}\\{y = \dfrac{{1 + {\rm{x}}}}{2}}\end{array}} \right.\)
• Với a = 2, hệ trở thành \(\left\{ {\begin{array}{*{20}{c}}{2{\rm{x}} + 2y = 1}\\{x + y = 2}\end{array}} \right.\) nên vô nghiệm.
LG b
\(\left\{ {\begin{array}{*{20}{c}}{\left( {a - 2} \right)x + \left( {a - 4} \right)y = 2}\\{\left( {a + 1} \right)x + \left( {3a + 2} \right)y = - 1}\end{array}} \right.\)
Lời giải chi tiết:
Với a ≠ 0 và \(a \ne \dfrac{1}{2},\) hệ có nghiệm duy nhất \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{7}{{2{\rm{a}} - 1}}}\\{y = \dfrac{{ - 3}}{{2{\rm{a}} - 1}}}\end{array}} \right.\)
Với a = 0, hệ có vô số nghiệm \(\left\{ {\begin{array}{*{20}{c}}{x \in R}\\{y = \dfrac{{ - 1 - {\rm{x}}}}{2}}\end{array}} \right.\)
Với \(a = \dfrac{1}{2},\) hệ vô nghiệm
LG c
\(\left\{ {\begin{array}{*{20}{c}}{\left( {a - 1} \right)x + \left( {2a - 3} \right)y = a}\\{\left( {a + 1} \right)x + 3y = 6}\end{array}} \right.\)
Lời giải chi tiết:
Với a ≠ 0, a ≠ 2, hệ có nghiệm duy nhất \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{9}{{2{\rm{a}}}}}\\{y = \dfrac{{a - 3}}{{2{\rm{a}}}}}\end{array}} \right.\)
Với a = 0, hệ vô nghiệm.
Với a = 2, hệ vô số nghiệm \(\left\{ {\begin{array}{*{20}{c}}{x \in R}\\{y = 2 - x}\end{array}} \right.\)
LG d
\(\left\{ {\begin{array}{*{20}{c}}{\dfrac{{3\left( {x + y} \right)}}{{x - y}} = a}\\{\dfrac{{2x - y - a}}{{y - x}} = 1}\end{array}} \right.\)
Lời giải chi tiết:
Điều kiện : x ≠ y. Biến đổi hệ phương trình về dạng :
\(\left( I \right)\left\{ {\begin{array}{*{20}{c}}{\left( {3 - a} \right)x + \left( {3 + a} \right)y = 0}\\{3{\rm{x}} - 2y = a}\end{array}} \right.\)
Ta có: \(D = - a - 15;\) \({D_x} = - a\left( {3 + a} \right);\) \({D_y} = a\left( {3 - a} \right)\)
• Với a ≠ -15 thì D ≠ 0, hệ (I) có nghiệm duy nhất \(\left\{ {\begin{array}{*{20}{c}}{x = \dfrac{{a\left( {3 + a} \right)}}{{a + 15}}}\\{y = \dfrac{{a\left( {{\rm{a}} - 3} \right)}}{{a + 15}}}\end{array}} \right.\)
Nhận thấy rằng \(\dfrac{{a\left( {3 + a} \right)}}{{a + 15}} = \dfrac{{a\left( {{\rm{a}} - 3} \right)}}{{a + 15}} \Leftrightarrow {\rm{a}} = 0\)
Nên khi a ≠ 0 thì x ≠ y, khi đó nghiệm của (I) cũng là nghiệm của hệ đã cho.
• Với a = -15 thì \(D = 0;{D_x} \ne 0;{D_y} \ne 0,\) hệ (I) vô nghiệm nên hệ đã cho vô nghiệm.
Kết luận. Với a ≠ 0 và a ≠ -15, hệ có nghiệm duy nhất :
\(\left( {{\rm{x}};y} \right) = \left( {\dfrac{{a\left( {3 + a} \right)}}{{a + 15}};\dfrac{{a\left( {{\rm{a}} - 3} \right)}}{{a + 15}}} \right)\)
Với a = 0 hoặc a = -15, hệ vô nghiệm.
Loigiaihay.com




