Câu 27 trang 115 SGK Đại số và Giải tích 11 Nâng cao


Cho cấp số cộng (un)

Đề bài

Cho cấp số cộng (un) có \({u_2} + {u_{22}} = 60\). Hãy tính tổng 23 số hạng đầu tiên của cấp số cộng đó.

Phương pháp giải - Xem chi tiết

Sử dụng định lí 3: \({S_n} = {{n\left( {{u_1} + {u_n}} \right)} \over 2}\).

Lời giải chi tiết

Gọi \(d\) là công sai của cấp số cộng đã cho, ta có :

\({u_1} = {u_2} - d\,\text{ và }\,{u_{23}} = {u_{22}} + d\)

Do đó, áp dụng định lí 3 cho \(n = 23\), ta được :

\({S_{23}} = {{23\left( {{u_1} + {u_{23}}} \right)} \over 2}  = \frac{{23\left( {{u_2} - d + {u_{22}} + d} \right)}}{2}\)

\(= {{23\left( {{u_2} + {u_{22}}} \right)} \over 2} = {{23.60} \over 2} = 23.30 = 690\)

Cách khác:

Ta có:

\(\begin{array}{l}
\left\{ \begin{array}{l}
{u_2} = {u_1} + d\\
{u_{22}} = {u_1} + 21d
\end{array} \right.\\
\Rightarrow {u_2} + {u_{22}} = 60\\
\Leftrightarrow {u_1} + d + {u_1} + 21d = 60\\
\Rightarrow 2{u_1} + 22d = 60\\
\Rightarrow {S_{23}} = \frac{{23\left( {2{u_1} + 22d} \right)}}{2}\\
= \frac{{23.60}}{2} = 690
\end{array}\)

Loigiaihay.com


Bình chọn:
3.7 trên 3 phiếu

Các bài liên quan: - Bài 3. Cấp số cộng

>> Học trực tuyến luyện thi THPTQG, Đại học 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới nâng cao.


Gửi bài