Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao


Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng mỗi dãy số sau là một cấp số cộng và hãy xác định công sai của cấp số cộng đó:

LG a

Dãy số (un) với \(u_n= 19n – 5 \);

Phương pháp giải:

Dãy số \((u_n)\) được gọi là 1 CSC nếu \(  {u_{n + 1}} = {u_n} + d,\forall n \in {N^*}\) với d là một hằng số.

Lời giải chi tiết:

Ta có:

\({u_{n + 1}} - {u_n} \)

\(= 19\left( {n + 1} \right) - 5 - \left( {19n - 5} \right) \)

\( = 19n + 19 - 5 - 19n + 5\)

\(= 19\) với mọi \(n ≥ 1\).

\( \Rightarrow {u_{n + 1}} = {u_n} + 19,\forall n \in {N^*}\)

Do đó \((u_n)\) là một cấp số cộng với công sai \(d = 19\).

LG b

Dãy số (un) với \(u_n= an + b\), trong đó a và b là các hằng số.

Lời giải chi tiết:

Ta có:

\({u_{n + 1}} - {u_n}\)

\( = an + a + b - an - b\)

\( = a\left( {n + 1} \right) + b - \left( {an + b} \right) \)

\(= a\) với mọi \(n ≥ 1\).

\( \Rightarrow {u_{n + 1}} = {u_n} + a,\forall n \in {N^*}\)

Do đó \((u_n)\) là một cấp số cộng với công sai \(d = a\).

 Loigiaihay.com


Bình chọn:
4.2 trên 11 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 11 - Xem ngay

Tham Gia Group Dành Cho 2K8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí