Câu 19 trang 114 SGK Đại số và Giải tích 11 Nâng cao


Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng mỗi dãy số sau là một cấp số cộng và hãy xác định công sai của cấp số cộng đó:

LG a

Dãy số (un) với \(u_n= 19n – 5 \);

Phương pháp giải:

Dãy số \((u_n)\) được gọi là 1 CSC nếu \(  {u_{n + 1}} = {u_n} + d,\forall n \in {N^*}\) với d là một hằng số.

Lời giải chi tiết:

Ta có:

\({u_{n + 1}} - {u_n} \)

\(= 19\left( {n + 1} \right) - 5 - \left( {19n - 5} \right) \)

\( = 19n + 19 - 5 - 19n + 5\)

\(= 19\) với mọi \(n ≥ 1\).

\( \Rightarrow {u_{n + 1}} = {u_n} + 19,\forall n \in {N^*}\)

Do đó \((u_n)\) là một cấp số cộng với công sai \(d = 19\).

LG b

Dãy số (un) với \(u_n= an + b\), trong đó a và b là các hằng số.

Lời giải chi tiết:

Ta có:

\({u_{n + 1}} - {u_n}\)

\( = an + a + b - an - b\)

\( = a\left( {n + 1} \right) + b - \left( {an + b} \right) \)

\(= a\) với mọi \(n ≥ 1\).

\( \Rightarrow {u_{n + 1}} = {u_n} + a,\forall n \in {N^*}\)

Do đó \((u_n)\) là một cấp số cộng với công sai \(d = a\).

 Loigiaihay.com


Bình chọn:
3.7 trên 6 phiếu

Các bài liên quan: - Bài 3. Cấp số cộng

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài