Giải toán 11, giải bài tập toán 11 nâng cao, Toán 11 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 3. Cấp số cộng
Câu 23 trang 115 SGK Đại số và Giải tích 11 Nâng cao>
Cho cấp số cộng
Đề bài
Cho cấp số cộng (un) có \(u_{20}= -52\) và \(u_{51}= -145\). Hãy tìm số hạng tổng quát của cấp số cộng đó.
Phương pháp giải - Xem chi tiết
Công thức số hạng tổng quát của CSC: \({u_n} = {u_1} + \left( {n - 1} \right)d\)
Sử dụng công thức trên và kết hợp dữ kiện vài toán lập hệ phương trình ẩn d và \(u_1\).
Giải hệ tìm d và \(u_1\) suy ra \(u_n\).
Lời giải chi tiết
Gọi \(d\) là công sai của cấp số cộng.
Ta có:
\(\left\{ {\matrix{{{u_{20}} = - 52} \cr {{u_{51}} = - 145} \cr} } \right. \)\(\Leftrightarrow \left\{ {\matrix{{{u_1} + 19d = - 52} \cr {{u_1} + 50d = - 145} \cr} } \right. \)\(\Leftrightarrow \left\{ {\matrix{{{u_1} = 5} \cr {d = - 3} \cr} } \right.\)
Vậy
\(\eqalign{
& {u_n} = {u_1} + \left( {n - 1} \right)d \cr&= 5 + \left( {n - 1} \right)\left( { - 3} \right) \cr
& {u_n} = - 3n + 8 \cr} \)
Loigiaihay.com




