 Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                                                
                            Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
                         Bài 2: Áp dụng mệnh đề vào suy luận toán học
                                                        Bài 2: Áp dụng mệnh đề vào suy luận toán học
                                                    Câu 11 trang 12 SGK Đại số 10 Nâng cao>
Chứng minh định lý sau bằng phản chứng
Đề bài
Chứng minh định lý sau bằng phản chứng
“Nếu n là số tự nhiên và n2 chia hết cho 5 thì n chia hết cho 5”.
Lời giải chi tiết
Giả sử n là số tự nhiên và \({n^2}\) chia hết cho 5 nhưng n không chia hết cho 5.
Khi đó \(n = 5k + r\) với \(r \in \left\{ {1;2;3;4} \right\}\)
TH1: \(n = 5k + 1\) thì \({n^2} = {\left( {5k + 1} \right)^2} = 25{k^2} + 10k + 1\) không chia hết cho 5 (mâu thuẫn)
TH2: \(n = 5k + 2\) thì \({n^2} = {\left( {5k + 2} \right)^2} = 25{k^2} + 20k + 4\) không chia hết cho 5 (mâu thuẫn)
TH3: \(n = 5k + 3\) thì \({n^2} = {\left( {5k + 3} \right)^2} = 25{k^2} + 30k + 9\) không chia hết cho 5 (mâu thuẫn)
TH4: \(n = 5k + 4\) thì \({n^2} = {\left( {5k + 4} \right)^2} = 25{k^2} + 40k + 16\) không chia hết cho 5 (mâu thuẫn)
Do đó nếu \(n\) không chia hết cho 5 thì \({n^2}\) không chia hết cho 5 (mâu thuẫn giải thiết)
Vậy n chia hết cho 5.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ 
                 
                 
                                     
                                     
        
 
                                            




 
             
            