Câu 11 trang 12 SGK Đại số 10 Nâng cao


Chứng minh định lý sau bằng phản chứng

Đề bài

Chứng minh định lý sau bằng phản chứng

“Nếu n là số tự nhiên và n2 chia hết cho 5 thì n chia hết cho 5”.

Lời giải chi tiết

Giả sử n là số tự nhiên và \({n^2}\) chia hết cho 5 nhưng n không chia hết cho 5.

Khi đó \(n = 5k + r\) với \(r \in \left\{ {1;2;3;4} \right\}\)

TH1: \(n = 5k + 1\) thì \({n^2} = {\left( {5k + 1} \right)^2} = 25{k^2} + 10k + 1\) không chia hết cho 5 (mâu thuẫn)

TH2: \(n = 5k + 2\) thì \({n^2} = {\left( {5k + 2} \right)^2} = 25{k^2} + 20k + 4\) không chia hết cho 5 (mâu thuẫn)

TH3: \(n = 5k + 3\) thì \({n^2} = {\left( {5k + 3} \right)^2} = 25{k^2} + 30k + 9\) không chia hết cho 5 (mâu thuẫn)

TH4: \(n = 5k + 4\) thì \({n^2} = {\left( {5k + 4} \right)^2} = 25{k^2} + 40k + 16\) không chia hết cho 5 (mâu thuẫn)

Do đó nếu \(n\) không chia hết cho 5 thì \({n^2}\) không chia hết cho 5 (mâu thuẫn giải thiết)

Vậy n chia hết cho 5.

Loigiaihay.com


Bình chọn:
4.6 trên 20 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí