Bài 8 trang 14 Sách giáo khoa (SGK) Hình học 10 Nâng cao


Cho bốn điểm bất kì M, N, P, Q. Chứng minh các đẳng thức sau

Lựa chọn câu để xem lời giải nhanh hơn

Cho bốn điểm bất kì \(M, N, P, Q\). Chứng minh các đẳng thức sau

LG a

\(\overrightarrow {PQ}  + \overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MQ} \)

Phương pháp giải:

Sử dụng tính chất giao hoán và kết hợp của phép cộng véc tơ.

Quy tắc ba điểm: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

Lời giải chi tiết:

\(\overrightarrow {PQ}  + \overrightarrow {NP}  + \overrightarrow {MN}  \)

\(= (\overrightarrow {MN}  + \overrightarrow {NP} ) + \overrightarrow {PQ} \) (giao hoán)

\(= \overrightarrow {MP}  + \overrightarrow {PQ}  \) (quy tắc ba điểm)

\(= \overrightarrow {MQ} \) (quy tắc ba điểm)

LG b

\(\overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {QP}  + \overrightarrow {MQ} \)

Lời giải chi tiết:

\(\overrightarrow {NP}  + \overrightarrow {MN}  \)

\(= (\overrightarrow {NQ}  + \overrightarrow {QP} ) + (\overrightarrow {MQ}  + \overrightarrow {QN} ) \) (quy tắc ba điểm)

\(= (\overrightarrow {QP}  + \overrightarrow {MQ} ) +( \overrightarrow {NQ}  + \overrightarrow {QN} ) \) (giao hoán)

\(= \overrightarrow {QP}  + \overrightarrow {MQ} \) (quy tắc ba điểm)

( vì \(\overrightarrow {NQ}  + \overrightarrow {QN}  = \overrightarrow 0 \) )

Cách khác:

\(\begin{array}{l}\overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {MN}  + \overrightarrow {NP} \\ = \overrightarrow {MP} \,\,\,\,\left( 1 \right)\\\overrightarrow {QP}  + \overrightarrow {MQ}  = \overrightarrow {MQ}  + \overrightarrow {QP} \\ = \overrightarrow {MP} \,\,\,\left( 2 \right)\end{array}\)

Từ (1) và (2) suy ra \(\overrightarrow {NP}  + \overrightarrow {MN}  = \overrightarrow {QP}  + \overrightarrow {MQ} \).

LG c

\(\overrightarrow {MN}  + \overrightarrow {PQ}  = \overrightarrow {MQ}  + \overrightarrow {PN} \)

Lời giải chi tiết:

\(\overrightarrow {MN}  + \overrightarrow {PQ}\)

\(  = (\overrightarrow {MQ}  + \overrightarrow {QN} ) + (\overrightarrow {PN}  + \overrightarrow {NQ} ) \)

\(= \overrightarrow {MQ}  + \overrightarrow {PN}  + \overrightarrow {QN}  + \overrightarrow {NQ}  \)

\(= \overrightarrow {MQ}  + \overrightarrow {PN} \)

(vì \(\overrightarrow {QN}  + \overrightarrow {NQ} = \overrightarrow {QQ} = \overrightarrow 0 \))

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 8 phiếu

Các bài liên quan: - Bài 2. Tổng của hai vectơ

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài