Bài 10 trang 14 Sách giáo khoa (SGK) Hình học 10 Nâng cao


Cho hình bình hành ABCD với tâm O. Hãy điền vào chỗ trống (…) để được đẳng thức đúng

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình bình hành \(ABCD\) với tâm \(O\). Hãy điền vào chỗ trống (…) để được đẳng thức đúng

LG a

\(\overrightarrow {AB}  + \overrightarrow {AD}  = ....\)  

Phương pháp giải:

Sử dụng quy tắc ba điểm, quy tắc hình bình hành:

Với ba điểm M, N, P bất kì ta có: \(\overrightarrow {MN}  + \overrightarrow {NP}  = \overrightarrow {MP} \)

Nếu OABC là hình bình hành thì ta có:

\(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow {OB} \)

Lời giải chi tiết:

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \) (quy tắc hình bình hành).

LG b

\(\overrightarrow {AB}  + \overrightarrow {CD}  = ......\)

Lời giải chi tiết:

\(\overrightarrow {AB}  + \overrightarrow {CD}  = \,\overrightarrow {AB}  + \overrightarrow {BA}   = \overrightarrow {AA} = \overrightarrow 0 \,\)

LG c

\(\overrightarrow {AB}  + \overrightarrow {OA}  = ......\)

Lời giải chi tiết:

\(\overrightarrow {AB}  + \overrightarrow {OA}  = \overrightarrow {OA}  + \overrightarrow {AB} \) (giao hoán)

\( = \overrightarrow {OB} \) (quy tắc ba điểm)

LG d

\(\overrightarrow {OA}  + \overrightarrow {OC}  = .......\)

Lời giải chi tiết:

\(\overrightarrow {OA}  + \overrightarrow {OC}  = \overrightarrow 0 \) (vì O là trung điểm của AC).

LG e

\(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = ........\)

Lời giải chi tiết:

\(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD} \)

\(= (\overrightarrow {OA}  + \overrightarrow {OC} ) + (\overrightarrow {OB}  + \overrightarrow {OD} ) \) (giao hoán)

\(= \overrightarrow 0  + \overrightarrow 0  = \overrightarrow 0 \)

(vì O là trung điểm của AC). 

Loigiaihay.com


Bình chọn:
3.6 trên 7 phiếu

Các bài liên quan: - Bài 2. Tổng của hai vectơ

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài