Bài 55 trang 14 SBT Hình học 10 Nâng cao


Giải bài 55 trang 14 sách bài tập Hình học 10 Nâng cao. Cho G là trọng tâm tam giác ABC. Trên cạnh AB lấy hai điểm M và N sao cho AM=MN=NB...

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Cho \(G\) là trọng tâm tam giác \(ABC\). Trên cạnh \(AB\) lấy hai điểm \(M\) và \(N\) sao cho \(AM=MN=NB\).

LG a

Chứng tỏ rằng \(G\) cũng là trọng tâm tam giác \(MNC\).

Lời giải chi tiết:

Gọi \(I\) là trung điểm \(MN\) thì \(I\) cũng là trung điểm \(AB\), do đó

\(\overrightarrow {GM}  + \overrightarrow {GN}  = 2\overrightarrow {GI} = \overrightarrow {GA}  + \overrightarrow {GB} \)

Suy ra

\(\overrightarrow {GM}  + \overrightarrow {GN}  + \overrightarrow {GC} \)

\(= \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \).

Vậy \(G\) cũng là trọng tâm của tam giác \(MNC.\)

LG b

Đặt \(\overrightarrow {GA}  = \overrightarrow a ,\,\,\overrightarrow {GB}  = \overrightarrow b \). Hãy biểu thị các vec tơ sau đây qua \(\overrightarrow a \) và \(\overrightarrow b \): \(\overrightarrow {GC} ,\,\overrightarrow {AC} ,\,\overrightarrow {GM} ,\,\overrightarrow {CN} \).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\
\Rightarrow \overrightarrow {GC} = - \overrightarrow {GA} - \overrightarrow {GB} \\
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \overrightarrow a - \overrightarrow b \\
\overrightarrow {AC} = \overrightarrow {GC} - \overrightarrow {GA} \\
\,\,\,\,\,\,\,\,\, = - \overrightarrow a - \overrightarrow b - \overrightarrow a \\
\,\,\,\,\,\,\,\,\, = - 2\overrightarrow a - \overrightarrow b
\end{array}\)

\(\begin{array}{l}\overrightarrow {GM}  = \overrightarrow {GA}  + \overrightarrow {AM}  \\ = \overrightarrow {GA}  + \frac{1}{3}\overrightarrow {AB} \\ = \overrightarrow {GA}  + \frac{1}{3}\left( {\overrightarrow {GB}  - \overrightarrow {GA} } \right)\\= \overrightarrow a  + \dfrac{1}{3}(\overrightarrow b  - \overrightarrow a ) \\= \dfrac{{2\overrightarrow a  + \overrightarrow b }}{3}.\\\overrightarrow {CN}  = \overrightarrow {CA}  + \overrightarrow {AN} \\ =  - \overrightarrow {AC}  + \frac{2}{3}\overrightarrow {AB}  \\=  - \overrightarrow {AC}  + \frac{2}{3}\left( {\overrightarrow {GB}  - \overrightarrow {GA} } \right)\\ = 2\overrightarrow a  + \overrightarrow b  + \dfrac{2}{3}(\overrightarrow b  - \overrightarrow a )\\ = \dfrac{{4\overrightarrow a  + 5\overrightarrow b }}{3}.\end{array}\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!