Bài 5 trang 63 Hình học 12 Nâng cao


Cho tam giác ABC vuông tại A, . Gọi là thể tích các khối tròn xoay sinh bởi tam giác đó (kê cả các điểm trong) khi lần lượt quay quanh AB, AC, BC.

Đề bài

Cho tam giác \(ABC\) vuông tại \(A\), \(AB = c,\,AC = b\) . Gọi \({V_1},{V_2},{V_3}\)  là thể tích các khối tròn xoay sinh bởi tam giác đó (kê cả các điểm trong) khi lần lượt quay quanh \(AB, AC, BC\).

a) Tính \({V_1},{V_2},{V_3}\) theo \(b, c\).

b) Chứng minh rằng \({1 \over {V_3^2}} = {1 \over {V_1^2}} + {1 \over {V_2^2}}\)

Lời giải chi tiết

a) Khi quay tam giác \(ABC\) quanh \(AB\) ta được khối nón có chiều cao \(AB = c\) và bán kính đáy \(AC = b\) nên có thể tích \(V_1 = {1 \over 3}\pi c{b^2}\)

Tương tự khi quay tam giác \(ABC\) quanh \(AC\) ta được khối nón có thể tích \({V_2} = {1 \over 3}\pi b{c^2}\)

Gọi \(AH\) là chiều cao của tam giác \(ABC\). Khi quay tam giác \(ABC\) quanh \(BC\) ta được hai khối nón sinh bởi hai tam giác \(ABH\) và \(ACH\).

Ta có: \(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{{A{C^2} + A{B^2}}}{{A{B^2}.A{C^2}}} \)

\(\Rightarrow A{H^2} = \frac{{A{B^2}.A{C^2}}}{{A{B^2} + A{C^2}}} = \frac{{{b^2}{c^2}}}{{{b^2} + {c^2}}} \) \( \Rightarrow AH = \frac{{bc}}{{\sqrt {{b^2} + {c^2}} }}\)

Khi đó ta có 
\({V_3} = {1 \over 3}\pi A{H^2}.BH + {1 \over 3}\pi A{H^2}.CH \) \(= {1 \over 3}\pi AH^2.BC \) \(= {1 \over 3}\pi {\left( {{{bc} \over {\sqrt {{b^2} + {c^2}} }}} \right)^2}\sqrt {{b^2} + {c^2}}  \) \(= {1 \over 3}{{\pi {b^2}{c^2}} \over {\sqrt {{b^2} + {c^2}} }}\)

b) Ta có: \({1 \over {V_3^2}} = {{9\left( {{b^2} + {c^2}} \right)} \over {\pi ^2 {b^4}{c^4}}}\)

\({1 \over {V_1^2}} + {1 \over {V_2^2}} = {9 \over {\pi ^2{c^2}{b^4}}} + {9 \over {\pi ^2{b^2}{c^4}}} \) \(= {{9\left( {{b^2} + {c^2}} \right)} \over {\pi^2 {b^4}{c^4}}} = {1 \over {V_3^2}}\)

Loigiaihay.com


Bình chọn:
3.5 trên 4 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài