Giải bài tập Toán 12 Nâng cao, Toán 12 Nâng cao, đầy đủ giải tích và hình học
Ôn tập chương II - Mặt cầu, mặt trụ, mặt nón
Bài 1 trang 63 SGK Hình học 12 Nâng cao>
Cho mp(P) và điểm A không thuộc (P). Chứng minh rằng mọi mặt cầu đi qua A và có tâm nằm trên (P) luôn luôn đi qua hai điểm cố định.
Đề bài
Cho mp \((P)\) và điểm \(A\) không thuộc \((P)\). Chứng minh rằng mọi mặt cầu đi qua \(A\) và có tâm nằm trên \((P)\) luôn luôn đi qua hai điểm cố định.
Lời giải chi tiết

Lấy điểm \(O\) nằm trên mp \((P)\). Gọi \((S)\) là mặt cầu đi qua \(A\) có tâm \(O\).
Gọi \(A’\) là điểm đối xứng của \(A\) qua mp \((P)\) ta có \(OA’ = OA = R\) nên \((S)\) đi qua \(A’\). Vậy mặt cầu \((S)\) luôn đi qua hai điểm cố định \(A\) và \(A’\).
Loigiaihay.com




