Bài 42 trang 63 SGK Đại số 10 nâng cao


Trong mỗi trường hợp cho dưới đây, hãy vẽ đồ thị hàm số của các hàm số trên cùng một hệ trục tọa độ rồi xác định tọa độ giao điểm của chúng.

Lựa chọn câu để xem lời giải nhanh hơn

Trong mỗi trường hợp cho dưới đây, hãy vẽ đồ thị hàm số của các hàm số trên cùng một hệ trục tọa độ rồi xác định tọa độ giao điểm của chúng.

LG a

\(y = x - 1\) và \(y = x^2 - 2x - 1\)

Lời giải chi tiết:

Đường thẳng d: \(y = x – 1\) qua \(A(0; -1); B(1; 0)\)

Parabol (P): \(y = x^2– 2x – 1\) có đỉnh \(S(1; -2)\)

Phương trình hoành độ giao điểm của d và (P) là:

\(x^2 – 2x – 1 = x – 1  ⇔ x^2  - 3x = 0\)

\( \Leftrightarrow \left[ \matrix{
x = 0\,\,(y = - 1) \hfill \cr 
x = 3\,\,(y = 2) \hfill \cr} \right.\)

Giao điểm của d và (P) là: \(A(0, -1)\) và \(C(3, 2)\)

 

LG b

\(y = -x + 3\) và \(y = -x^2 - 4x + 1\)

Lời giải chi tiết:

Đường thẳng d: \(y = -x + 3\) qua \(A(0, 3); B(3, 0)\)

Parabol (P): \(y = -x^2 – 4x + 1\) có đỉnh \(S(-2, 5)\)

Phương trình hoành độ giao điểm của và (P) là:

\(\eqalign{
& - {x^2} - 4x + 1 = - x + 3 \cr 
& \Leftrightarrow {x^2} + 3x + 2 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x = - 1\,\,\,\,(y = 4) \hfill \cr 
x = - 2\,\,\,\,(y = 5) \hfill \cr} \right. \cr} \) 

Giao điểm của d và (P) là \((-1, 4)\) và \((-2, 5)\)

 

LG c

\(y = 2x - 5\) và \(y = x^2 - 4x - 1\)

Lời giải chi tiết:

Đường thẳng d: \(y = 2x – 5\) đi qua \(A(0, -5); B(1, -3)\)

Parabol (P): \(y  = x^2 – 4x - 1\) có đỉnh \(S(2, -5)\)

Phương trình hoành độ giao điểm của và (P) là:

\(\eqalign{
& {x^2} - 4x - 1 = 2x - 5 \cr&\Leftrightarrow {x^2} - 6x + 4 = 0 \cr 
& \Leftrightarrow \left[ \matrix{
x = 3 - \sqrt 5 \,\,\,\,\,\,\,\,(y = 1 - 2\sqrt 5 ) \hfill \cr 
x = 3 + \sqrt 5 \,\,\,\,\,\,\,\,\,(y = 1 + 2\sqrt 5 ) \hfill \cr} \right. \cr} \)

Giao điểm của (P) và d là: \((3 - \sqrt 5 ,\,1 - 2\sqrt 5 );\,(3 + \sqrt 5 ,\,1 + 2\sqrt 5 )\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
3.8 trên 12 phiếu

Các bài liên quan: - Ôn tập chương 2

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài