Bài 42 trang 63 SGK Đại số 10 nâng cao>
Trong mỗi trường hợp cho dưới đây, hãy vẽ đồ thị hàm số của các hàm số trên cùng một hệ trục tọa độ rồi xác định tọa độ giao điểm của chúng.
Trong mỗi trường hợp cho dưới đây, hãy vẽ đồ thị hàm số của các hàm số trên cùng một hệ trục tọa độ rồi xác định tọa độ giao điểm của chúng.
LG a
\(y = x - 1\) và \(y = x^2 - 2x - 1\)
Lời giải chi tiết:
Đường thẳng d: \(y = x – 1\) qua \(A(0; -1); B(1; 0)\)
Parabol (P): \(y = x^2– 2x – 1\) có đỉnh \(S(1; -2)\)
Phương trình hoành độ giao điểm của d và (P) là:
\(x^2 – 2x – 1 = x – 1 ⇔ x^2 - 3x = 0\)
\( \Leftrightarrow \left[ \matrix{
x = 0\,\,(y = - 1) \hfill \cr
x = 3\,\,(y = 2) \hfill \cr} \right.\)
Giao điểm của d và (P) là: \(A(0, -1)\) và \(C(3, 2)\)
LG b
\(y = -x + 3\) và \(y = -x^2 - 4x + 1\)
Lời giải chi tiết:
Đường thẳng d: \(y = -x + 3\) qua \(A(0, 3); B(3, 0)\)
Parabol (P): \(y = -x^2 – 4x + 1\) có đỉnh \(S(-2, 5)\)
Phương trình hoành độ giao điểm của và (P) là:
\(\eqalign{
& - {x^2} - 4x + 1 = - x + 3 \cr
& \Leftrightarrow {x^2} + 3x + 2 = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = - 1\,\,\,\,(y = 4) \hfill \cr
x = - 2\,\,\,\,(y = 5) \hfill \cr} \right. \cr} \)
Giao điểm của d và (P) là \((-1, 4)\) và \((-2, 5)\)
LG c
\(y = 2x - 5\) và \(y = x^2 - 4x - 1\)
Lời giải chi tiết:
Đường thẳng d: \(y = 2x – 5\) đi qua \(A(0, -5); B(1, -3)\)
Parabol (P): \(y = x^2 – 4x - 1\) có đỉnh \(S(2, -5)\)
Phương trình hoành độ giao điểm của và (P) là:
\(\eqalign{
& {x^2} - 4x - 1 = 2x - 5 \cr&\Leftrightarrow {x^2} - 6x + 4 = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 3 - \sqrt 5 \,\,\,\,\,\,\,\,(y = 1 - 2\sqrt 5 ) \hfill \cr
x = 3 + \sqrt 5 \,\,\,\,\,\,\,\,\,(y = 1 + 2\sqrt 5 ) \hfill \cr} \right. \cr} \)
Giao điểm của (P) và d là: \((3 - \sqrt 5 ,\,1 - 2\sqrt 5 );\,(3 + \sqrt 5 ,\,1 + 2\sqrt 5 )\)
Loigiaihay.com
- Bài 43 trang 63 SGK Đại số 10 nâng cao
- Bài 44 trang 64 SGK Đại số 10 nâng cao
- Bài 45 trang 64 SGK Đại số 10 nâng cao
- Bài 46 trang 64 SGK Đại số 10 nâng cao
- Bài 41 trang 63 SGK Đại số 10 nâng cao
>> Xem thêm