Bài 4 trang 45 SGK Đại số 10 nâng cao


Khảo sát sự biến thiên của mỗi hàm số sau và lập bảng biến thiên của nó:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Khảo sát sự biến thiên của mỗi hàm số sau và lập bảng biến thiên của nó:

LG a

y = x2 + 2x – 2 trên mỗi khoảng \((-∞; -1)\) và \((-1, +∞)\)

Phương pháp giải:

Hàm số f đồng biến trêm K khi và chỉ khi 

\(\forall {x_1},{x_2} \in K\) và \({x_1} \ne {x_2}\) thì \(\frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} > 0\)

Hàm số f nghịch biến trêm K khi và chỉ khi 

\(\forall {x_1},{x_2} \in K\) và \({x_1} \ne {x_2}\) thì \(\frac{{f\left( {{x_2}} \right) - f\left( {{x_1}} \right)}}{{{x_2} - {x_1}}} < 0\)

Lời giải chi tiết:

+ Với mọi x1; x2 ∈  \((-∞; -1)\) và x1 ≠ x2 ta có:

f(x2) – f(x1) = x22 + 2x2 – 2 – (x12 + 2x1 – 2)

 = x22 – x12 + 2(x2 – x1) = (x2 – x1)(x1 + x2 + 2)

\(\Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {x_1} + {x_2} + 2\)

Vì x1; x2 ∈  \((-∞; -1)\) nên x1 < -1 và x2 < -1 nên x+ x+ 2 < 0

Nên \( \Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} < 0\)

Vậy hàm số y = x2 + 2x – 2 nghịch biến trên \((-∞; -1)\)

+ Với mọi x1; x2 ∈ \((-1, +∞)\) và x1 ≠ x2 ta có:

\({{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {x_1} + {x_2} + 2 > 0\)

(Vì x1; x2 ∈  \((-1;+∞)\) nên x1 > -1; x2 > -1)

Vậy hàm số y =  x2 + 2x – 2 đồng biến trên \((-1, +∞)\)

Bảng biến thiên:

LG b

\(y = -2x^2 + 4x + 1 \) trên mỗi khoảng \((-∞; 1)\) và \((1, +∞)\)

Lời giải chi tiết:

+ Với mọi x1; x2 ∈ \((-∞; 1)\) và x1 ≠ x2 ta có:

f(x2) – f(x1) = (-2x22 + 4x2 + 1) – (-2x12 + 4x1 + 1)

= -2(x22 - x12) + 4(x2 - x1)

\(=  - 2\left( {{x_2} - {x_1}} \right)\left( {{x_2} + {x_1}} \right) + 4\left( {{x_2} - {x_1}} \right)\)

\(= 2\left( {{x_2} - {x_1}} \right)\left( { - {x_2} - {x_1} + 2} \right)\)

\( = {\rm{ }}2\left( {{x_2} - {x_1}} \right)\left[ {2 - \left( {{x_1} + {x_2}} \right)} \right]\)

\( \Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} \) \(=2\left[ {2 - \left( {{x_1} + {x_2}} \right)} \right]\)

Vì x1 < 1 và x2 < 1 nên \({x_1} + {x_2} < 2 \Rightarrow 2 - \left( {{x_1} + {x_2}} \right) > 0\)

Vậy hàm số \(y = -2x^2+ 4x + 1\) đồng biến trên khoảng \((-∞; 1)\)

+ Với mọi x1; x2 ∈ \((1; +∞)\) thì x1 > 1 và x2 > 1 và x1 ≠ x2 ta có:

\({x_1} + {x_2} > 2 \Rightarrow 2 - \left( {{x_1} + {x_2}} \right) < 0\)

Do đó \({{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} \)\(=2\left[ {2 - \left( {{x_1} + {x_2}} \right)} \right]\) < 0

Vậy hàm số \(y = -2x^2 + 4x + 1\) nghịch biến trên khoảng \((1; +∞)\)

Bảng biến thiên:

LG c

\(y = {2 \over {x - 3}}\) trên mỗi khoảng \((-∞; 3)\) và \((3, +∞)\)

Lời giải chi tiết:

+ Với x1, x2 ∈ \((- ∞; 3)\) với x1 ≠ x2 ta có:

\(\eqalign{
& f({x_2}) - f({x_1}) = {2 \over {{x_2} - 3}} - {2 \over {{x_1} - 3}} \cr 
& = {{2({x_1} - 3) - 2({x_2} - 3)} \over {({x_1} - 3)({x_2} - 3)}} \cr&= {{2({x_1} - {x_2})} \over {({x_1} - 3)({x_2} - 3)}} \cr 
& \Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {{ - 2} \over {({x_1} - 3)({x_2} - 3)}} \cr} \)

(vì x1 < 3; x2 < 3 nên (x1 – 3)(x2 – 3) > 0)

\(\Rightarrow {{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}}<0\)

Vậy hàm số \(y = {2 \over {x - 3}}\)  nghịch biến trên \((- ∞; 3)\)

+ Với x1, x2 ∈ \((3; +∞)\) với x1 ≠ x2 ta có:

\({{f({x_2}) - f({x_1})} \over {{x_2} - {x_1}}} = {{ - 2} \over {({x_1} - 3)({x_2} - 3)}} < 0\)

(vì x1 > 3; x2 > 3 nên (x1 – 3)(x2 – 3) > 0)

Vậy hàm số \(y = {2 \over {x - 3}}\) nghịch biến trên \((3; + ∞)\)

Bảng biến thiên:

Loigiaihay.com


Bình chọn:
4.3 trên 21 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!