Bài 1 trang 44 SGK Đại số 10 nâng cao


Tìm tập xác định của mỗi hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của mỗi hàm số sau

LG a

\(\displaystyle y = {{3x + 5} \over {{x^2} - x + 1}}\)

Phương pháp giải:

Biểu thức \(\frac{P}{Q}\) xác định khi \(Q\ne 0\).

Lời giải chi tiết:

Vì \({x^2} - x + 1 = {x^2} - 2.\frac{1}{2}.x + \frac{1}{4} + \frac{3}{4} \)\(= {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0,\forall x\)

Do đó x2 – x + 1 ≠ 0 với mọi \(x ∈\mathbb R\) nên tập xác định của hàm số là \(D =\mathbb R\)

LG b

\(\displaystyle y = {{x - 2} \over {{x^2} - 3x + 2}}\)

Lời giải chi tiết:

Do phương trình: x2 - 3x + 2 = 0 có tập nghiệm là {1; 2} nên:

Hàm số xác định

\( \Leftrightarrow \,{x^2} - 3x + 2 \ne 0 \Leftrightarrow \left\{ \matrix{
x \ne 1 \hfill \cr 
x \ne 2 \hfill \cr} \right.\)

Vậy \(D{\rm{ }} = {\rm{ }}\mathbb R\backslash \left\{ {1,{\rm{ }}2} \right\}\)

LG c

\(y = {{\sqrt {x - 1} } \over {x - 2}}\)

Lời giải chi tiết:

Hàm số xác định:

\( \Leftrightarrow \left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
x - 2 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 1 \hfill \cr 
x \ne 2 \hfill \cr} \right.\)

Vậy \(D = [1; 2) ∪ (2; +∞)\) hoặc \(D = \left[ {1; + \infty } \right)\backslash \left\{ 2 \right\}\)

LG d

\(y = {{{x^2} - 2} \over {(x + 2)\sqrt {x + 1} }}\)

Lời giải chi tiết:

Hàm số xác định 

\( \Leftrightarrow \left\{ \matrix{
x + 2 \ne 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ne- 2 \hfill \cr 
x > - 1 \hfill \cr} \right. \)

\(\Leftrightarrow x > - 1\)

Vậy \(D= (-1; +∞)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.2 trên 18 phiếu

Các bài liên quan: - Bài 1: Đại cương về hàm số

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài