Bài 4 trang 188 SBT Hình học 10 Nâng cao


Giải bài tập Bài 4 trang 188 SBT Hình học 10 Nâng cao

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Đề bài

Trên các cạnh \(AC\) và \(BC\) của tam giác \(ABC\) lần lượt lấy các điểm \(M\) và \(N\) sao cho \( \dfrac{{AM}}{{MC}} =  \dfrac{{NC}}{{NB}} = k\), trên \(MN\) lấy điểm \(P\) sao cho \( \dfrac{{PM}}{{PN}} = k\). Gọi \(S, S_1\) và \(S_2\) lần lượt là diện tích các tam giác \(ABC, APM\) và \(BPN\). Chứng minh \(\sqrt[3]{S} = \sqrt[3]{{{S_1}}} + \sqrt[3]{{{S_2}}}\).

 

Lời giải chi tiết

(h.137).

 

Từ giả thiết\( \dfrac{{AM}}{{MC}} = k\), ta suy ra: \( \dfrac{{AM}}{{AC}} =  \dfrac{k}{{k + 1}}\) và \( \dfrac{{MC}}{{AC}} =  \dfrac{1}{{k + 1}}\).

Tương tự như thế:

\( \dfrac{{NC}}{{BC}} =  \dfrac{k}{{k + 1}}  ,\) \(   \dfrac{{NB}}{{BC}} =  \dfrac{1}{{k + 1}}  , \) \(  \dfrac{{PM}}{{MN}} =  \dfrac{k}{{k + 1}}  , \) \(  \dfrac{{PN}}{{MN}} =  \dfrac{1}{{k + 1}}\).

Từ đó suy ra :

\(\begin{array}{l}{S_1} = {S_{APM}} =  \dfrac{k}{{k + 1}}{S_{AMN}} \\=  \dfrac{k}{{k + 1}}. \dfrac{k}{{k + 1}}{S_{ACN}}\\       =  \dfrac{k}{{k + 1}}. \dfrac{k}{{k + 1}}. \dfrac{k}{{k + 1}}{S_{ABC}}\\ = {\left( { \dfrac{k}{{k + 1}}} \right)^3}S.\end{array}\)

Tính toán tương tự, ta có \({S_2} = {\left( { \dfrac{1}{{k + 1}}} \right)^3}S\).

Vậy \(\sqrt[3]{{{S_1}}} + \sqrt[3]{{{S_2}}} =  \dfrac{k}{{k + 1}}\sqrt[3]{S} +  \dfrac{1}{{k + 1}}\sqrt[3]{S}\)

\(= \sqrt[3]{S}\).

Loigiaihay.com

 

Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

PH/HS Tham Gia Nhóm Lớp 10 Để Trao Đổi Tài Liệu, Học Tập Miễn Phí!