Bài 1 trang 188 SBT Hình học 10 Nâng cao


Giải bài tập Bài 1 trang 188 SBT Hình học 10 Nâng cao

Lựa chọn câu để xem lời giải nhanh hơn

Cho hình thang \(ABCD\) vuông tại \(A\) và \(B,\) \(AB = AD =  \dfrac{1}{2}BC = 1\). Đặt \(\overrightarrow {AB}  = \overrightarrow b  ,  \overrightarrow {AD}  = \overrightarrow d \).

LG a

 Biểu thị các vectơ sau đây theo hai vectơ \(\overrightarrow b \) và \(\overrightarrow d  : \overrightarrow {BD}  ,  \overrightarrow {BC}  ,  \overrightarrow {DC}  ,  \overrightarrow {AC} \).

Giải chi tiết:

Ta có

\(\begin{array}{l}\overrightarrow {BD}  = \overrightarrow {AD}  - \overrightarrow {AB}  = \overrightarrow d  - \overrightarrow b  ;\\\overrightarrow {BC}  = 2\overrightarrow d  ;\\\overrightarrow {DC}  = \overrightarrow {BC}  - \overrightarrow {BD} \\ = 2\overrightarrow d  - (\overrightarrow d  - \overrightarrow b ) = \overrightarrow b  + \overrightarrow d  ;\\\overrightarrow {AC}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow b  + 2\overrightarrow d .\end{array}\)

LG b

Gọi \(M\) là trung điểm của \(AB, N\) là điểm sao cho \(\overrightarrow {DN}  =  \dfrac{1}{3}\overrightarrow {DC} \). Chứng minh \(AN//CM\) và \(BN//DM.\)

Giải chi tiết:

Ta có

\(\begin{array}{l}\overrightarrow {CM}  = \overrightarrow {AM}  - \overrightarrow {AC}\\  =  \dfrac{{\overrightarrow b }}{2} - (\overrightarrow b  + 2\overrightarrow d ) =  -  \dfrac{{\overrightarrow b  + 4\overrightarrow d }}{2} ;\\\overrightarrow {AN}  = \overrightarrow {AD}  + \overrightarrow {DN}\\  = \overrightarrow d  +  \dfrac{{\overrightarrow b  + \overrightarrow d }}{3} \\=  \dfrac{{\overrightarrow b  + 4\overrightarrow d }}{3} =  -  \dfrac{2}{3}\overrightarrow {CM} .\end{array}\)

Vậy \(CM//AN.\)

\(\begin{array}{l}\overrightarrow {DM}  = \overrightarrow {AM}  - \overrightarrow {AD}\\  =  \dfrac{{\overrightarrow b }}{2} - \overrightarrow d  =  \dfrac{{\overrightarrow b  - 2\overrightarrow d }}{2} ;\\\overrightarrow {BN}  = \overrightarrow {BD}  + \overrightarrow {DN} \\ = \overrightarrow d  - \overrightarrow b  +  \dfrac{{\overrightarrow b  + \overrightarrow d }}{3}\\ =  \dfrac{{ - 2\overrightarrow b  + 4\overrightarrow d }}{3} =  -  \dfrac{4}{3}\overrightarrow {DM} .\end{array}\)

Vậy \(DM//BN.\)

LG c

 Tính diện tích hai tam giác \(ANB, DNC.\)

Giải chi tiết:

 Gọi \(\varphi \) là góc hợp bởi \(\overrightarrow {NA} \) và \(\overrightarrow {NB} \), ta có \(\cos \varphi  =  \dfrac{{\overrightarrow {NA} .\overrightarrow {NB} }}{{NA.NB}}\).

Theo  câu a), ta có \(\overrightarrow {NA} .\overrightarrow {NB}  =  \dfrac{{(\overrightarrow b  + 4\overrightarrow d )( - 2\overrightarrow b  + 4\overrightarrow d )}}{9}\)

\(=  \dfrac{{ - 2 + 16}}{9} =  \dfrac{{14}}{9}\).

\(\begin{array}{l}NA = \sqrt {{{\left( { \dfrac{{\overrightarrow b  + 4\overrightarrow d }}{3}} \right)}^2}}  =  \dfrac{{\sqrt {17} }}{3}  ,\\   NB = \sqrt {{{\left( { \dfrac{{ - 2\overrightarrow b  + 4\overrightarrow d }}{3}} \right)}^2}}  =  \dfrac{{\sqrt {20} }}{3}.\\ \Rightarrow    \cos \varphi  =  \dfrac{7}{{\sqrt {85} }}.\end{array}\)

Vậy \(\sin \varphi  = \sqrt {1 - {{\cos }^2}\varphi } =  \dfrac{6}{{\sqrt {85} }}\).

Vậy \({S_{ANB}} =  \dfrac{1}{2}NA.NB.\sin \varphi \)

\(=  \dfrac{1}{2}. \dfrac{{\sqrt {17} }}{3}. \dfrac{{\sqrt {20} }}{3}. \dfrac{6}{{\sqrt {85} }} =  \dfrac{2}{3}\).

Theo câu a), ta có góc \(CMD = \varphi \).

Theo câu b), ta có \(MC = \sqrt {{{\left( { \dfrac{{\overrightarrow b  + 4\overrightarrow d }}{2}} \right)}^2}}  =  \dfrac{{\sqrt {17} }}{2}  , \)

\(MD = \sqrt {{{\left( { \dfrac{{ - \overrightarrow b  + 2\overrightarrow d }}{2}} \right)}^2}}  =  \dfrac{{\sqrt 5 }}{2}\).

Vậy \({S_{CMD}} =  \dfrac{1}{2}.MC.MD.\sin \varphi \)

\(=  \dfrac{1}{2}. \dfrac{{\sqrt {17} }}{2}. \dfrac{{\sqrt 5 }}{2}. \dfrac{6}{{\sqrt {85} }} =  \dfrac{3}{4}\).

LG d

Tính diện tích hình bình hành tạo bởi các đường thẳng \(AN, CM, BN, DM.\)

Giải chi tiết:

 Do \(M\) là trung điểm của \(AB\) nên hình bình hành cũng nhận các trung điểm của \(NA\) và \(NB\) làm đỉnh. Vậy diện tích hình bình hành đó bằng nửa diện tích tam giác \(ANB\) hay bằng \( \dfrac{1}{3}\).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

>> Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài