Bài 36 trang 35 SGK giải tích 12 nâng cao


Tìm các tiệm cận của đồ thị hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các tiệm cận của đồ thị hàm số sau:

LG a

\(\,y = \sqrt {{x^2} - 1} \,\,\);

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
* Tiệm cận xiên khi \(x \to  + \infty \)
Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } {{\sqrt {{x^2} - 1} } \over x} = \mathop {\lim }\limits_{x \to  + \infty } {{x\sqrt {1 - {1 \over {{x^2}}}} } \over x} \) \(= \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 - {1 \over {{x^2}}}}  = 1\)
\(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) \) \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} - 1 - {x^2}}}{{\sqrt {{x^2} - 1}  + x}}\) \(= \mathop {\lim }\limits_{x \to  + \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị khi \(x \to  + \infty \).
* Tiệm cận xiên khi \(x \to  - \infty \)
\(a = \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} - 1} } \over x}  = \mathop {\lim }\limits_{x \to  - \infty } \frac{{\left| x \right|\sqrt {1 - \frac{1}{{{x^2}}}} }}{{\sqrt {{x^2} - 1}  + x}}\) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 - {1 \over {{x^2}}}} } \over x} =  - \mathop {\lim }\limits_{x \to  - \infty } \sqrt {1 - {1 \over {{x^2}}}} \) \( =  - 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} - 1}  + x} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } \frac{{{x^2} - 1 - {x^2}}}{{\sqrt {{x^2} - 1}  - x}}\) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  - x}} = 0\)
Vậy đường thẳng \(y = -x\) là tiệm cận xiên của đồ thị (khi \(x \to  - \infty \)).

LG b

\(y = 2x + \sqrt {{x^2} - 1} \)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash ( - \infty ;1{\rm{]}} \cup {\rm{[}}1; + \infty )\)
* Tiệm cận xiên khi \(x \to  + \infty \)
Ta có: \(a = \mathop {\lim }\limits_{x \to  + \infty } {y \over x} = \mathop {\lim }\limits_{x \to  + \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right) \) \(= \mathop {\lim }\limits_{x \to  + \infty } \left( {2 + \sqrt {1 - {1 \over {{x^2}}}} } \right) = 3\)
\(b = \mathop {\lim }\limits_{x \to  + \infty } \left( {y - 3x} \right) \) \( = \mathop {\lim }\limits_{x \to  + \infty } \left[ {2x + \sqrt {{x^2} - 1}  - 3x} \right]\) \(= \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} - 1}  - x} \right) \) \(= \mathop {\lim }\limits_{x \to  + \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  + x}} = 0\)
Vậy đường thẳng \(y = 3x\) là tiệm cận xiên của đồ thị (khi \(x \to  + \infty \)).
* Tiệm cận xiên khi \(x \to  - \infty \)
\(a = \mathop {\lim }\limits_{x \to  - \infty } {y \over x} = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 + {{\sqrt {{x^2} + 1} } \over x}} \right)\) \( = \mathop {\lim }\limits_{x \to  - \infty } \left( {2 - \sqrt {1 - {1 \over {{x^2}}}} } \right) = 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {y - x} \right) \) \( = \mathop {\lim }\limits_{x \to  - \infty } \left[ {2x + \sqrt {{x^2} - 1}  - x} \right]\)

\(= \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} - 1}  + x} \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - 1} \over {\sqrt {{x^2} - 1}  - x}} = 0\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị (khi \(x \to  - \infty \))

LG c

\(y = x + \sqrt {{x^2} + 1} \)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)
* Tiệm cận xiên khi \(x \to  + \infty \)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to + \infty } {y \over x} \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {1 + {{\sqrt {{x^2} + 1} } \over x}} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {1 + \sqrt {1 + {1 \over {{x^2}}}} } \right) = 2 \cr 
& b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - 2x} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 1} - x} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt {{x^2} + 1} + x}} = 0 \cr} \)

Đường thẳng \(y = 2x\) là tiệm cận xiên (khi \(x \to  + \infty \))
* Tiệm cận khi \(x \to  - \infty \)
\(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} - 1} } \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } {1 \over {x - \sqrt {{x^2} - 1} }} = 0\)

Đường thẳng \(y = 0\) là tiệm cận ngang (khi \(x \to  - \infty \))

LG d

\(y = \sqrt {{x^2} + x + 1} \).

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\)
* \(a = \mathop {\lim }\limits_{x \to  + \infty } {y \over x} \) \( = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {{x^2} + x + 1} }}{x} = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\frac{{{x^2} + x + 1}}{{{x^2}}}} \) \(= \mathop {\lim }\limits_{x \to  + \infty } \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  = 1\)

\(\eqalign{
& b = \mathop {\lim }\limits_{x \to + \infty } \left( {y - x} \right) \cr&= \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + x + 1} - x} \right) \cr 
& = \mathop {\lim }\limits_{x \to + \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1} + x}} \cr&= \mathop {\lim }\limits_{x \to + \infty } {{1 + {1 \over x}} \over {\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }+1} = {1 \over 2} \cr} \)

Đường thẳng \(y = x + {1 \over 2}\) là tiệm cận xiên (khi \(x \to  + \infty \))
* \(a = \mathop {\lim }\limits_{x \to  - \infty } {y \over x} = \mathop {\lim }\limits_{x \to  - \infty } {{\sqrt {{x^2} + x + 1} } \over x} \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{ - x\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} } \over x} \) \(= \mathop {\lim }\limits_{x \to  - \infty } -\sqrt {1 + {1 \over x} + {1 \over {{x^2}}}}  =  - 1\)
\(b = \mathop {\lim }\limits_{x \to  - \infty } \left( {y + x} \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } \left( {\sqrt {{x^2} + x + 1}  + x} \right) \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{x + 1} \over {\sqrt {{x^2} + x + 1}  - x}} \) \(= \mathop {\lim }\limits_{x \to  - \infty } {{1 + {1 \over x}} \over { - \sqrt {1 + {1 \over x} + {1 \over {{x^2}}}} }-1} =  - {1 \over 2}\)

Đường thẳng \(y =  - x - {1 \over 2}\) là tiệm cận xiên (khi \(x \to  - \infty \))

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài