Bài 35 trang 35 SGK giải tích 12 nâng cao


Tìm các tiệm cận của đồ thị hàm số sau:

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các tiệm cận của đồ thị hàm số sau:

LG a

\(\,y = {{2x - 1} \over {{x^2}}} + x - 3\,;\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ 0 \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ - }} y =  - \infty \) nên x = 0 là tiệm cận đứng.
* \(\mathop {\lim }\limits_{x \to  \pm \infty } \left[ {y - \left( {x - 3} \right)} \right] \) \(= \mathop {\lim }\limits_{x \to  \pm \infty } {{2x - 1} \over {{x^2}}} \) \(= \mathop {\lim }\limits_{x \to  \pm \infty } \left( {{2 \over x} - {1 \over {{x^2}}}} \right) = 0\) nên y = x – 3 là tiệm cận xiên.

LG b

\(\,\,{{{x^3} + 2} \over {{x^2} - 2x}}\)

Phương pháp giải:

Đường thẳng y=ax+b (\(a\ne 0\)) là TCX của đồ thị hàm số y=f(x) khi và chỉ khi

\(a = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to  + \infty } \left[ {f\left( x \right) - ax} \right]\)

hoặc \(a = \mathop {\lim }\limits_{x \to  - \infty } \frac{{f\left( x \right)}}{x},b = \mathop {\lim }\limits_{x \to  - \infty } \left[ {f\left( x \right) - ax} \right]\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ {0;2} \right\}\)
* \(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  + \infty \) nên x = 0 là tiệm cận đứng.
* \(\mathop {\lim }\limits_{x \to {2^ + }} y = \mathop {\lim }\limits_{x \to {2^ + }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {2^ - }} y = \mathop {\lim }\limits_{x \to {2^ - }} {{{x^3} + 2} \over {x\left( {x - 2} \right)}} =  - \infty \) nên \(x = 2\) là tiệm cận đứng.
* Tiệm cận xiên có dạng \(y = ax +b\)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + 2} \over {{x^3} - 2{x^2}}} \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {2 \over {{x^3}}}} \over {1 - {2 \over x}}} = 1 \cr 
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right)\cr& = \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + 2} \over {{x^2} - 2x}} - x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{2{x^2} + 2} \over {{x^2} - 2x}} \cr&= \mathop {\lim }\limits_{x \to  \pm \infty } \frac{{2 + \frac{2}{{{x^2}}}}}{{1 - \frac{2}{x}}}= 2 \cr} \)

Đường thẳng \(y = x + 2\) là tiệm cận xiên của đồ thị.

LG c

\(\,\,{{{x^3} + x + 1} \over {{x^2} - 1\,}}\,\,;\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;1} \right\}\)
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} =  - \infty \) nên \(x = -1\) là tiệm cận đứng .
\(\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} {{{x^3} + x + 1} \over {\left( {x - 1} \right)\left( {x + 1} \right)}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {1^ - }} y =  - \infty \) nên \(x = 1\) là tiệm cận đứng.
* Tiệm cận xiên có dạng \(y = ax + b\)

\(\eqalign{
& a = \mathop {\lim }\limits_{x \to \pm \infty } {y \over x} = \mathop {\lim }\limits_{x \to \pm \infty } {{{x^3} + x + 1} \over {x\left( {{x^2} - 1} \right)}}\cr& = \mathop {\lim }\limits_{x \to \pm \infty } {{1 + {1 \over {{x^2}}} + {1 \over {{x^3}}}} \over {1 - {1 \over {{x^2}}}}} = 1 \cr 
& b = \mathop {\lim }\limits_{x \to \pm \infty } \left( {y - x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } \left( {{{{x^3} + x + 1} \over {{x^2} - 1}}-x} \right) \cr&= \mathop {\lim }\limits_{x \to \pm \infty } {{2x + 1} \over {{x^2} - 1}} = 0 \cr} \)

\( \Rightarrow y = x\) là tiệm cận xiên.

LG d

\(\,\,{{{x^2} + x + 1} \over { - 5{x^2} - 2x + 3}}\)

Lời giải chi tiết:

TXĐ: \(D =\mathbb R\backslash \left\{ { - 1;{3 \over 5}} \right\}\)
* Vì \(\mathop {\lim }\limits_{x \to  \pm \infty } y = \mathop {\lim }\limits_{x \to  \pm \infty } {{1 + {1 \over x} + {1 \over {{x^2}}}} \over { - 5 - {2 \over x} + {3 \over {{x^2}}}}} =  - {1 \over 5}\) nên \(y =  - {1 \over 5}\) là tiệm cận ngang.
* \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} =  + \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( { - 1} \right)}^ - }} y =  - \infty \) nên \(x = -1\) là tiệm cận đứng.
\(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ + }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} =  - \infty \) và \(\mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} y = \mathop {\lim }\limits_{x \to {{\left( {{3 \over 5}} \right)}^ - }} {{{x^2} + x + 1} \over {\left( {x + 1} \right)\left( {3 - 5x} \right)}} =  + \infty \) nên \(x = {3 \over 5}\) là tiệm cận đứng.

Loigiaihay.com


Bình chọn:
3.6 trên 10 phiếu

>> Luyện thi tốt nghiệp THPT và Đại học năm 2021, mọi lúc, mọi nơi tất cả các môn cùng các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu trên Tuyensinh247.com. Đã có đầy đủ các khóa học từ nền tảng tới luyện thi chuyên sâu.


Gửi bài