Bài 35 trang 103 SGK Hình học 10 nâng cao


Trong mặt phẳng tọa độ Oxy, cho điểm A chạy trên trục Ox, điểm B chạy trên trục Oy nhưng độ dài đoạn AB bằng a không đổi

Đề bài

Trong mặt phẳng tọa độ Oxy, cho điểm A chạy trên trục Ox, điểm B chạy trên trục Oy nhưng độ dài đoạn AB bằng a không đổi. Tìm tập hợp các điểm M thuộc đoạn AB sao cho \(MB = 2MA.\)

Lời giải chi tiết

 

Giả sử: \(A\left( {{x_0};0} \right);B\left( {0;{y_0}} \right)\)

\(AB = a \Leftrightarrow \sqrt {x_0^2 + y_0^2}  = a \Leftrightarrow x_0^2 + y_0^2 = {a^2}\)

M thuộc đoạn AB và \(MB = 2MA\) nên \(\overrightarrow {AM}  = {1 \over 3}\overrightarrow {AB} \)

Giả sử: M(x, y) , khi đó: \(\overrightarrow {AM}  = \left( {x - {x_0};y} \right),\overrightarrow {AB}  = \left( { - {x_0};{y_0}} \right);\)

\(3\overrightarrow {AM}  = \overrightarrow {AB} .\) 

\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
3\left( {x - {x_0}} \right) = - {x_0} \hfill \cr 
3y = {y_0} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
{x_0} = {3 \over 2}x \hfill \cr 
{y_0} = 3y \hfill \cr} \right. \cr 
& x_0^2 + y_0^2 = {a^2} \Leftrightarrow {9 \over 4}{x^2} + 9{y^2} = {a^2} \cr&\Leftrightarrow {{{x^2}} \over {{{\left( {{{2a} \over 3}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{a \over 3}} \right)}^2}}} = 1 \cr} \)

Vậy tập hợp điểm M là elip có phương trình là: 

\({{{x^2}} \over {{{\left( {{{2a} \over 3}} \right)}^2}}} + {{{y^2}} \over {{{\left( {{a \over 3}} \right)}^2}}} = 1.\)

Loigiaihay.com


Bình chọn:
4 trên 5 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí