Bài 33 trang 103 SGK Hình học 10 Nâng cao


Tính độ dài dây cung của (E) đi qua một tiêu điểm và vuông góc với trục tiêu

Lựa chọn câu để xem lời giải nhanh hơn

Cho elip \((E):{{{x^2}} \over 9} + {{{y^2}} \over 1} = 1.\)

LG a

Tính độ dài dây cung của (E) đi qua một tiêu điểm và vuông góc với trục tiêu (đoạn thẳng nối hai điểm của elip gọi là dây cung của elip, trục chứa các tiêu điểm gọi là trục tiêu của elip).

Lời giải chi tiết:

 

+ Ta có: \({a^2} = 9,{b^2} = 1 \) \(\Rightarrow {c^2} = {a^2} - {b^2} = 9 - 1 = 8 \)

\(\Rightarrow c = 2\sqrt 2 \)

\(\Rightarrow  {F_1}\left( { - 2\sqrt 2 ;0} \right);\,{F_2}\left( {2\sqrt 2 ;0} \right)\)

Đường thẳng đi qua tiêu điểm \(F_2\) và vuông góc trục tiêu có phương trình \(x = 2\sqrt 2 \)

Tọa độ giao điểm của đường thẳng với (E) thỏa mãn hệ phương trình:

\( \left\{ \begin{array}{l}
x = 2\sqrt 2 \,\,\,\,\,\,\,\,\left( 1 \right)\\
\frac{{{x^2}}}{9} + \frac{{{y^2}}}{1} = 1\,\,\left( 2 \right)
\end{array} \right.\)

Thay (1) và (2) ta được:

\({8 \over 9} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = {1 \over 9} \Leftrightarrow y =  \pm {1 \over 3}.\) 

Vậy \({M_1}\left( {2\sqrt 2 ;{1 \over 3}} \right);{M_2}\left( {2\sqrt 2 ; - {1 \over 3}} \right)\) và độ dài dây cung cần tìm là:

\({M_1}{M_2} \) \(= \sqrt {{{\left( {2\sqrt 2  - 2\sqrt 2 } \right)}^2} + {{\left( { - \frac{1}{3} - \frac{1}{3}} \right)}^2}} \) \( = \sqrt {0 + \frac{4}{3}}  = \frac{2}{3}\)

LG b

Tìm trên (E) điểm M sao cho \(M{F_1} = 2M{F_2}\) , trong đó \({F_1},{F_2}\) lần lượt là các tiêu điểm của (E) nằm bên trái và bên phải trục tung.

Phương pháp giải:

Sử sụng công thức tính bán kính qua tiêu: \(M{F_1} = a + \frac{c}{a}x,M{F_2} = a - \frac{c}{a}x\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& M{F_1} = a + {c \over a}x = 3 + {{2\sqrt 2 } \over 3}x \cr 
& M{F_2} = a - {c \over a}x = 3 - {{2\sqrt 2 } \over 3}x \cr 
& M{F_1} = 2M{F_2}\cr & \Leftrightarrow 3 + {{2\sqrt 2 } \over 3}x = 6 - {{4\sqrt 2 } \over 3}x \cr&\Leftrightarrow 2\sqrt 2 x = 3 \Leftrightarrow x = {{3\sqrt 2 } \over 4}. \cr} \) 

Thay \(x = {{3\sqrt 2 } \over 4}\) vào phương trình elip ta được:

\({2 \over {16}} + {y^2} = 1 \Leftrightarrow {y^2} = {7 \over 8} \Leftrightarrow y =  \pm {{\sqrt {14} } \over 4}.\)

Vậy \({M_1}\left( {{{3\sqrt 2 } \over 4};{{\sqrt {14} } \over 4}} \right);{M_2}\left( {{{3\sqrt 2 } \over 4}; - {{\sqrt {14} } \over 4}} \right).\)

Loigiaihay.com


Bình chọn:
4.4 trên 10 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí