Bài 31 trang 103 SGK Hình học 10 Nâng cao


Tìm tọa độ các tiêu điểm, các đỉnh, độ dài trục lớn, độ dài trục bé của mỗi elip có phương trình sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tọa độ các tiêu điểm, các đỉnh, độ dài trục lớn, độ dài trục bé của mỗi elip có phương trình sau

LG a

\({{{x^2}} \over {25}} + {{{y^2}} \over 4} = 1\)

Phương pháp giải:

Sử dụng công thức \({a^2} = {b^2} + {c^2}\)

Xác định a, b, c suy ra các tọa độ đỉnh và tiêu điểm.

Lời giải chi tiết:

Ta có: \(a = 5;b = 2;\)

\({a^2} = {b^2} + {c^2} \Rightarrow {c^2} = {a^2} - {b^2} \)

\(\Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt {21} \)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt {21} ;0} \right);{F_2}\left( {\sqrt {21} ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 5;0} \right);{A_2}\left( {5;0} \right);\) \({B_1}\left( {0; - 2} \right);{B_2}\left( {0;2} \right)\)

Độ dài trục lớn \(2a = 10\), độ dài trục bé \(2b = 4\).

LG b

\({{{x^2}} \over 9} + {{{y^2}} \over 4} = 1\)

Lời giải chi tiết:

Ta có: \(a = 3;b = 2;\)

\({a^2} = {b^2} + {c^2} \Rightarrow {c^2} = {a^2} - {b^2}\)

\(\Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt 5 .\)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 5 ;0} \right);{F_2}\left( {\sqrt 5 ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 3;0} \right);{A_2}\left( {3;0} \right);\) \({B_1}\left( {0; - 2} \right);{B_2}\left( {0;2} \right).\)

Độ dài trục lớn \(2a = 6\) , độ dài trục bé \(2b = 4\)

LG c

\({x^2} + 4{y^2} = 4.\)

Lời giải chi tiết:

Ta có: \({x^2} + 4{y^2} = 4 \Leftrightarrow {{{x^2}} \over 4} + {{y^2}\over 1} = 1\)

\( \Rightarrow a = 2;b = 1;\)

\({a^2} = {b^2} + {c^2} \Rightarrow {c^2} = {a^2} - {b^2}\)

\(\Rightarrow c = \sqrt {{a^2} - {b^2}}  = \sqrt 3 .\)

Tọa độ các tiêu điểm: \({F_1}\left( { - \sqrt 3 ;0} \right);{F_2}\left( {\sqrt 3 ;0} \right)\)

Tọa độ các đỉnh: \({A_1}\left( { - 2;0} \right);{A_2}\left( {2;0} \right);\) \({B_1}\left( {0; - 1} \right);{B_2}\left( {0;1} \right).\)

Độ dài trục lớn \(2a = 4\), độ dài trục bé \(2b = 2\).

Loigiaihay.com


Bình chọn:
3.3 trên 6 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí