Giải toán 10, giải bài tập Toán 10 Nâng cao, đầy đủ đại số giải tích và hình học
Bài 4. Tích của một vectơ với một số
Bài 25 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao>
Gọi G là trọng tâm tam giác ABC.
Đề bài
Gọi \(G\) là trọng tâm tam giác \(ABC\). Đặt \(\overrightarrow a = \overrightarrow {GA} \) và \(\overrightarrow b = \overrightarrow {GB} \). Hãy biểu thị mỗi vec tơ \(\overrightarrow {AB} ,\overrightarrow {GC} ,\overrightarrow {BC} ,\overrightarrow {CA} \) qua các vec tơ \(\overrightarrow a \) và \(\overrightarrow b \).
Lời giải chi tiết

Vì \(G\) là trọng tâm tam giác \(ABC\) nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)
Ta có
\(\eqalign{
& \overrightarrow {AB} = \overrightarrow {GB} - \overrightarrow {GA} = \overrightarrow b - \overrightarrow a \cr
& \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0\cr&=>\overrightarrow {GC} = - \overrightarrow {GB} - \overrightarrow {GA} = - \overrightarrow b - \overrightarrow a \cr
& \overrightarrow {BC} = \overrightarrow {GC} - \overrightarrow {GB} = - \overrightarrow b - \overrightarrow a - \overrightarrow b \cr&= - 2\overrightarrow b - \overrightarrow a \cr
& \overrightarrow {CA} = \overrightarrow {GA} - \overrightarrow {GC} \cr&= \overrightarrow a - \left( { - \overrightarrow b - \overrightarrow a } \right) \cr&= 2\overrightarrow a + \overrightarrow b \cr} \)
Loigiaihay.com




