Bài 24 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao

Bình chọn:
4.1 trên 8 phiếu

Cho tam giác ABC và điểm G. Chứng minh rằng

Bài 24. Cho tam giác \(ABC\) và điểm \(G\). Chứng minh rằng

a) Nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) thì \(G\) là trọng tâm tam giác \(ABC\);

b) Nếu có điểm \(O\) sao cho \(\overrightarrow {OG}  = {1 \over 3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\) thì \(G\) là trọng tâm tam giác \(ABC\).

Hướng dẫn trả lời

a) Gọi \({G_1}\) là trọng tâm tam giác \(ABC\). Từ đó, ta có \(\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 .\)

Theo giả thiết, \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\(\eqalign{
& \Rightarrow \,\overrightarrow {G{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}B} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}C} = \overrightarrow 0 \cr
& \Rightarrow \,\,3\overrightarrow {G{G_1}} + \left( {\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {0\,} \,\,\,\,\, \Rightarrow \,\,3\overrightarrow {G{G_1}} = \overrightarrow 0 \,\,\,\,\,\,\, \Rightarrow \,\,\overrightarrow {G{G_1}} = \overrightarrow 0 \,\,\,\, \Rightarrow \,G \equiv {G_1} \cr} \)

b) Gọi \( {G_1}\) là trọng tâm tam giác \(ABC\). Từ đó, ta có \(\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 .\)

\(\eqalign{
& \overrightarrow {OG} = {1 \over 3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) \cr
& = {1 \over 3}\left( {3\overrightarrow {O{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {O{G_1}} \,\,\,\,\, \Rightarrow \,G \equiv {G_1} \cr} \)

loigiaihay.com

Các bài liên quan: - Bài 4. Tích của một vectơ với một số

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu