Bài 24 trang 24 Sách giáo khoa (SGK) Hình học 10 Nâng cao


Cho tam giác ABC và điểm G. Chứng minh rằng

Lựa chọn câu để xem lời giải nhanh hơn

Cho tam giác \(ABC\) và điểm \(G\). Chứng minh rằng

LG a

Nếu \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \) thì \(G\) là trọng tâm tam giác \(ABC\)

Lời giải chi tiết:

Gọi \({G_1}\) là trọng tâm tam giác \(ABC\). Từ đó, ta có \(\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 .\)

Theo giả thiết, \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \)

\(\eqalign{
& \Rightarrow\overrightarrow {G{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}B} + \overrightarrow {G{G_1}} + \overrightarrow {{G_1}C} = \overrightarrow 0 \cr 
& \Rightarrow 3\overrightarrow {G{G_1}} + \left( {\overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) = \overrightarrow {0} \cr& \Rightarrow 3\overrightarrow {G{G_1}} = \overrightarrow 0 \Rightarrow \overrightarrow {G{G_1}} = \overrightarrow 0  \cr&\Rightarrow \,G \equiv {G_1} \cr} \)

Cách khác:

Gọi M là trung điểm BC ta có:

\(\begin{array}{l}\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {GA}  + 2\overrightarrow {GM}  = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {GA}  =  - 2\overrightarrow {GM} \end{array}\)

Do đó A, G, M thẳng hàng; G nằm giữa A, M và \(AG = 2GM \Rightarrow AG = \dfrac{2}{3}AM\)

Vậy G là trọng tâm tam giác.

LG b

Nếu có điểm \(O\) sao cho \(\overrightarrow {OG}  = \dfrac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\) thì \(G\) là trọng tâm tam giác \(ABC\).

Lời giải chi tiết:

Gọi \( {G_1}\) là trọng tâm tam giác \(ABC\).

Từ đó, ta có \(\overrightarrow {{G_1}A}  + \overrightarrow {{G_1}B}  + \overrightarrow {{G_1}C}  = \overrightarrow 0 .\)

\(\eqalign{
& \overrightarrow {OG} = {1 \over 3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) \cr 
& = {1 \over 3}\left( {3\overrightarrow {O{G_1}} + \overrightarrow {{G_1}A} + \overrightarrow {{G_1}B} + \overrightarrow {{G_1}C} } \right) \cr& = \frac{1}{3}\left( {3\overrightarrow {O{G_1}}  + \overrightarrow 0 } \right)= \overrightarrow {O{G_1}} \cr& \Rightarrow \,G \equiv {G_1} \cr} \)

Cách khác:

Ta có:

\(\begin{array}{l}\overrightarrow {OG}  = \dfrac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\\ \Rightarrow \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = 3\overrightarrow {OG} \\ \Leftrightarrow \overrightarrow {OG}  + \overrightarrow {GA}  + \overrightarrow {OG}  + \overrightarrow {GB}  + \overrightarrow {OG}  + \overrightarrow {GC}  = 3\overrightarrow {OG} \\ \Leftrightarrow 3\overrightarrow {OG}  + \left( {\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC} } \right) = 3\overrightarrow {OG} \\ \Leftrightarrow \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow 0 \end{array}\)

Vậy G là trọng tâm tam giác (theo câu a).

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 10 phiếu

>> Học trực tuyến Lớp 11 năm học mới trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu


Gửi bài