Bài 15 trang 200 SGK Đại số 10 Nâng cao

Bình chọn:
3.5 trên 6 phiếu

Tìm các điểm của đường tròn lượng giác xác định bởi số α trong mỗi trường hợp sau:

Tìm các điểm của đường tròn lượng giác xác định bởi số α trong mỗi trường hợp sau:

a) \(\cos \alpha  = \sqrt {1 - {{\sin }^2}\alpha } \)

b) \(\sqrt {{{\sin }^2}\alpha }  = \sin \alpha \)

c) \(\tan \alpha  = {{\sqrt {1 - {{\cos }^2}\alpha } } \over {\cos \alpha }}\)

Đáp án

a) Ta có:

\(\eqalign{
& \cos \alpha = \sqrt {1 - {{\sin }^2}\alpha } \Leftrightarrow \cos \alpha = \sqrt {{{\cos }^2}\alpha } \cr
& \Leftrightarrow \cos \alpha \ge 0 \cr} \)        

⇔  M(x, y) thỏa mãn x2 + y2 = 1; x ≥ 0

b) Ta có:

\(\sqrt {{{\sin }^2}\alpha }  = \sin \alpha  \Leftrightarrow \sin \alpha  \ge 0\)

⇔  M(x, y) thỏa mãn x2 + y2 = 1; y ≥ 0

c) Ta có:

\(\tan \alpha = {{\sqrt {1 - {{\cos }^2}\alpha } } \over {\cos \alpha }} \Leftrightarrow \left\{ \matrix{
\sin \alpha \ge 0 \hfill \cr
\cos \alpha \ne 0 \hfill \cr} \right.\)

⇔  M(x, y) thỏa mãn x2 + y2 = 1, y ≥ 0; y ≠ 1

Loigiaihay.com

Các bài liên quan: - Bài 2: Giá trị lượng giác của góc (cung) lượng giác

>>Học trực tuyến Lớp 10 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu