Bài 1 trang 44 SGK Đại số 10 nâng cao


Tìm tập xác định của mỗi hàm số sau

Lựa chọn câu để xem lời giải nhanh hơn

Tìm tập xác định của mỗi hàm số sau

LG a

\(\displaystyle y = {{3x + 5} \over {{x^2} - x + 1}}\)

Phương pháp giải:

Biểu thức \(\frac{P}{Q}\) xác định khi \(Q\ne 0\).

Lời giải chi tiết:

Vì \({x^2} - x + 1 = {x^2} - 2.\frac{1}{2}.x + \frac{1}{4} + \frac{3}{4} \)\(= {\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} > 0,\forall x\)

Do đó x2 – x + 1 ≠ 0 với mọi \(x ∈\mathbb R\) nên tập xác định của hàm số là \(D =\mathbb R\)

LG b

\(\displaystyle y = {{x - 2} \over {{x^2} - 3x + 2}}\)

Lời giải chi tiết:

Do phương trình: x2 - 3x + 2 = 0 có tập nghiệm là {1; 2} nên:

Hàm số xác định

\( \Leftrightarrow \,{x^2} - 3x + 2 \ne 0 \Leftrightarrow \left\{ \matrix{
x \ne 1 \hfill \cr 
x \ne 2 \hfill \cr} \right.\)

Vậy \(D{\rm{ }} = {\rm{ }}\mathbb R\backslash \left\{ {1,{\rm{ }}2} \right\}\)

LG c

\(y = {{\sqrt {x - 1} } \over {x - 2}}\)

Lời giải chi tiết:

Hàm số xác định:

\( \Leftrightarrow \left\{ \matrix{
x - 1 \ge 0 \hfill \cr 
x - 2 \ne 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ge 1 \hfill \cr 
x \ne 2 \hfill \cr} \right.\)

Vậy \(D = [1; 2) ∪ (2; +∞)\) hoặc \(D = \left[ {1; + \infty } \right)\backslash \left\{ 2 \right\}\)

LG d

\(y = {{{x^2} - 2} \over {(x + 2)\sqrt {x + 1} }}\)

Lời giải chi tiết:

Hàm số xác định 

\( \Leftrightarrow \left\{ \matrix{
x + 2 \ne 0 \hfill \cr 
x + 1 > 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x \ne- 2 \hfill \cr 
x > - 1 \hfill \cr} \right. \)

\(\Leftrightarrow x > - 1\)

Vậy \(D= (-1; +∞)\)

Loigiaihay.com


Bình chọn:
4.3 trên 20 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 10 - Xem ngay

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí