Trắc nghiệm Bài 2. Năng lượng của con lắc lò xo - Vật Lí 12

Đề bài

Câu 1 :

Biểu thức nào sau đây xác định cơ năng của con lắc lò xo dao động điều hòa?

  • A.

    \(W = \dfrac{1}{2}k{x^2}\)

  • B.

    \(W = \dfrac{1}{2}{\omega ^2}{A^2}\)

  • C.

    \(W = \dfrac{1}{2}m{v^2}\)

  • D.

    \(W = \dfrac{1}{2}k{A^2}\)

Câu 2 :

Cơ năng của một con lắc lò xo tỉ lệ thuận với:

  • A.

    Li độ dao động

  • B.

    Biên độ dao động

  • C.

    Bình phương biên độ dao động

  • D.

    Tần số dao động.

Câu 3 :

Trong dao động điều hòa, vì cơ năng được bảo toàn nên

  • A.

    Động năng không đổi.

  • B.

    Thế năng không đổi.

  • C.

    Động năng tăng bao nhiêu thì thế năng giảm bấy nhiêu và ngược lại.

  • D.

    Động năng và thế năng hoặc cùng tăng hoặc cùng giảm.

Câu 4 :

Cơ năng của một con lắc lò xo không phụ thuộc vào?

  • A.

    Khối lượng vật nặng

  • B.

    Độ cứng của vật

  • C.

    Biên độ dao động

  • D.

    Điều kiện kích thích ban đầu

Câu 5 :

Một con lắc lò xo dao động điều hoà với biên độ A. Khi tăng độ cứng của lò xo lên 4 lần và giảm biên độ dao động 2 lần thì cơ năng của con lắc sẽ:

  • A.

    Không đổi

  • B.

    Tăng bốn lần

  • C.

    Tăng hai lần

  • D.

    Giảm hai lần

Câu 6 :

Một chất điểm khối lượng $m = 100 (g)$, dao động điều hoà với phương trình $x = 4cos(2t) cm$. Cơ năng trong dao động điều hoà của chất điểm là:

  • A.

    W = 3200 J

  • B.

    W = 3,2 J

  • C.

    W= 0,32 J

  • D.

    W= 0,32 mJ

Câu 7 :

Một con lắc lò xo có độ cứng $k = 150 N/m$ và có năng lượng dao động là $E = 0,12 J$. Biên độ dao động của con lắc có giá trị là:

  • A.

    $A = 4 mm$

  • B.

    $A = 4 m$

  • C.

    $A = 0,04 m$

  • D.

    $A = 2 cm$

Câu 8 :

Một con lắc lò xo dao động điều hòa. Phát biểu nào sau đây là sai?

  • A.

     Động năng của con lắc: \({W_d} = \dfrac{1}{2}k{A^2} - \dfrac{1}{2}m{v^2}\)

  • B.

    Thế năng của con lắc: \({W_t} = \dfrac{1}{2}k{A^2} - \dfrac{1}{2}m{v^2}\)

  • C.

    Động năng của con lắc: \({W_d} = \dfrac{1}{2}m{\omega ^2}{A^2}{\sin ^2}(\omega t + \varphi )\)

  • D.

    Thế năng của con lắc: \({W_t} = \dfrac{1}{2}k{A^2}{\rm{co}}{{\rm{s}}^2}(\omega t + \varphi )\)

Câu 9 :

Chọn phát biểu sai về sự biến đổi năng lượng của một chất điểm dao động điều hòa với chu kỳ T, tần số f ?

  • A.

    Thế năng biến thiên tuần hoàn với chu kỳ T’ = T/2

  • B.

    Động năng biến thiên tuần hoàn với tần số f’ = 2f.

  • C.

    Cơ năng biến thiên tuần hoàn với tần số f’ = 2f

  • D.

    Tổng động năng và thế năng là một số không đổi.

Câu 10 :

Một con lắc lò xo dao động điều hòa và vật đang chuyển động từ vị trí biên về vị trí cân bằng thì:

  • A.

    Năng lượng của vật đang chuyển hóa từ thế năng sang động năng

  • B.

    Thế năng tăng dần và động năng giảm dần

  • C.

    Cơ năng của vật tăng dần đến giá trị lớn nhất

  • D.

    Thế năng của vật tăng dần nhưng cơ năng của vật không đổi

Câu 11 :

Một vật có khối lượng $m = 200 (g)$, dao động điều hoà với phương trình $x=10cos(5\pi t)cm$ . Tại thời điểm $t=0,5(s)$ thì vật có động năng là:

  • A.

    Wđ = 0,125 J

  • B.

    Wđ = 0,25 J

  • C.

    Wđ = 0,2 J

  • D.

    Wđ = 0,1 J

Câu 12 :

Một con lắc lò xo dao động điều hòa với biên độ $A$, tần số góc $ω$. Li độ và vận tốc của vật khi $W_d=nW_t$ là:

  • A.

    \(x =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }},v =  \pm A\sqrt {\dfrac{n}{{n + 1}}} \)

  • B.

    \(x =  \pm A\sqrt {n + 1} ,v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \)

  • C.

    \(x =  \pm \dfrac{A}{{\sqrt {n + 1} }},v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \)

  • D.

    \(x =  \pm A\sqrt {\dfrac{n}{{n + 1}}} ,v =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\)

Câu 13 :

Một vật dao động điều hòa với phương trình $x=10cos(4\pi t)cm$ . Tại thời điểm mà động năng bằng $3$ lần thế năng thì vật ở cách VTCB một khoảng:

  • A.

    3,3 cm

  • B.

    5,0 cm

  • C.

    7,0 cm

  • D.

    10,0 cm

Câu 14 :

Một vật dao động điều hòa với phương trình $x=10cos(4\pi t + \pi /3)cm$ . Tại thời điểm mà thế năng bằng $3$ lần động năng thì vật có tốc độ là:

  • A.

    v = 40π cm/s

  • B.

    v = 20π cm/s

  • C.

    v = 40 cm/s

  • D.

    v = 20 cm/s

Câu 15 :

Một vật dao động điều hòa với tần số góc $ω$, khi thế năng bằng $3$ lần động năng thì li độ $x$ và vận tốc $v$ của vật có mối liên hệ với nhau như thế nào?

  • A.

    ω = 2x.v

  • B.

    x = 2v.ω

  • C.

    3v = 2ω.x

  • D.

    ω.x = \(\sqrt 3 \)v

Câu 16 :

Một lò xo có độ cứng k treo thẳng đứng vào điểm cố định, đầu dưới có vật $m = 100 (g)$. Vật dao động điều hòa với tần số $f = 5 Hz$, cơ năng là $W=0,08J$ . Lấy $g = 10 m/s^2$\({\pi ^2} = 10\). Tỉ số động năng và thế năng tại li độ $x = 2 cm$ là:

  • A.

     3

  • B.

    1/3

  • C.

    1/2

  • D.

    4

Câu 17 :

Ở một thời điểm, vận tốc của một vật dao động điều hòa bằng 20% vận tốc cực đại, tỉ số giữa động năng và thế năng của vật là:

  • A.

    $24$

  • B.

    \(\dfrac{1}{{24}}\)

  • C.

    $5$

  • D.

    \(\dfrac{1}{5}\)

Câu 18 :

Một vật dao động điều hòa với chu kỳ T và biên độ là A. Khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là?

  • A.

    \(\dfrac{T}{2}\)

  • B.

    \(\dfrac{T}{4}\)

  • C.

    \(\dfrac{T}{6}\)

  • D.

    \(\dfrac{T}{8}\)

Câu 19 :

Một vật dao động điều hòa với chu kỳ T và biên độ là A. Ban đầu vật ở vị trí cân bằng, khoảng thời gian ngắn nhất kể từ khi vật dao động đến thời điểm mà động năng bằng thế năng là:

  • A.

     tmin = T/4

  • B.

    tmin = T/8

  • C.

    tmin = T/6

  • D.

    tmin = 3T/8

Câu 20 :

Con lắc lò xo dao động theo phương ngang với phương trình \(x = Acos(\omega t + \varphi )\). Cứ sau những khoảng thời gian bằng nhau và bằng \(\dfrac{\pi }{{40}}\left( s \right)\) thì động năng của vật bằng thế năng của lò xo. Con lắc dao động điều hoà với tần số góc:

  • A.

    \(\omega = 20{\rm{ }}rad/s\)

  • B.

    \(\omega = 80{\rm{ }}rad/s\)

  • C.

    \(\omega = 40{\rm{ }}rad/s\)

  • D.

    \(\omega = 10{\rm{ }}rad/s\)

Câu 21 :

Một chất điểm có khối lượng m = 1 kg dao động điều hoà với chu kì T = π/5 (s). Biết năng lượng của nó là 0,02 J. Biên độ dao động của chất điểm là:

  • A.

     A = 2 cm 

  • B.

    A = 4 cm

  • C.

    A = 6,3 cm

  • D.

    A = 6 cm

Câu 22 :

Một chất điểm dao động điều hòa theo phương trình x = Acos(4πt – π/6) cm. Trong một giây đầu tiên từ thời điểm t = 0, chất điểm qua li độ mà động năng bằng thế năng bao nhiêu lần?

  • A.

    4 lần.

  • B.

    6 lần.

  • C.

    7 lần

  • D.

    8 lần.

Câu 23 :

Một con lắc lò xo có m = 100 (g) dao động điều hoà với cơ năng W = 2 mJ và gia tốc cực đại amax = 80 cm/s2. Biên độ và tần số góc của dao động là:

  • A.

    A = 0,005 cm và ω = 40 rad/s

  • B.

    A = 5 cm và ω = 4 rad/s

  • C.

    A = 10 cm và ω = 2 rad/s

  • D.

    A = 4 cm và ω = 5 rad/s

Câu 24 :

Một con lắc lò xo dao động điều hòa gồm vật nặng có khối lượng \(m = 100g\) , đồ thị thế năng theo thời gian của con lăc như hình vẽ. Biết \({t_2} - {t_1} = 0,05s\), lấy \({\pi ^2} = 10\) . Biên độ và chu kì dao động của con lắc là:

  • A.

    $A=0,8 cm,T=0,1s$

  • B.

    $A = 0,8 cm, T = 0,2s$

  • C.

    $A = 0,4 cm, T = 0,1s$

  • D.

    $A = 0,4 cm, T = 0,2s$

Câu 25 :

Một vật có khối lượng $400g$ dao động điều hòa có đồ thị động năng như hình vẽ. Tại thời điểm $t = 0$ vật đang chuyển động theo chiều dương, lấy $\pi^2=10$. Phương trình dao động của vật là: 

  • A.

     \(x = 10c{\rm{os}}\left( {2\pi t + \dfrac{\pi }{3}} \right)cm\)

  • B.

    \(x = 10c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{3}} \right)cm\)

  • C.

    \(x = 5c{\rm{os}}\left( {2\pi t + \dfrac{\pi }{3}} \right)cm\)

  • D.

    \(x = 5c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{3}} \right)cm\)

Câu 26 :

Con lắc lò xo dao động điều hòa trên mặt phẳng ngang không ma sát. Khi vật ở vị trí biên, ta giữ chặt một phần của lò xo làm cơ năng của vật giảm \(10\% \) thì biên độ dao động của hệ vật sẽ

  • A.
     giảm \(\sqrt {10} \% \)        
  • B.
     tăng \(\sqrt {10} \% \)   
  • C.
     giảm \(10\% \)
  • D.
     tăng \(10\% \)
Câu 27 :

Một vật nặng gắn vào một lò xo nhẹ có độ cứng k = 20 N/m thực hiện dao động điều hoà với biên độ A = 5cm. Động năng của vật khi nó cách vị trí cân bằng 4 cm là

  • A.
    0,04 J.
  • B.
    0,0016 J.
  • C.
    0,009 J.
  • D.
    0,024 J.
Câu 28 :

Một con lắc lò xo có độ cứng \(k\), khối lượng vật nhỏ \(m\) dao động điều hoà. Tại thời điểm mà li độ và vận tốc của vật tương ứng là \(x\) và \(v\) thì động năng của vật là

  • A.
    \({W_d} = \frac{1}{2}m{x^2}\)
  • B.
    \({W_d} = \frac{1}{2}k{x^2}\)
  • C.
    \({W_d} = \frac{1}{2}m{v^2}.\)
  • D.
    \({W_d} = \frac{1}{2}k{v^2}\)
Câu 29 :

Xét một con lắc lò xo gồm vật nhỏ và lò xo nhẹ dao động điều hòa trên mặt phẳng nằm ngang với biên độ A. Chọn gốc thế năng tại vị trí cân bằng. Tại vị trí con lắc có động năng bằng cơ năng, li độ của vật có giá trị là:

  • A.

    \( \pm \dfrac{A}{2}\)

  • B.

    \(0\)

  • C.

    \( \pm A\)

  • D.

    \( \pm \dfrac{{A\sqrt 2 }}{2}\)

Câu 30 :

Động năng dao động của một con lắc lò xo được mô tả theo thế năng dao động của nó bằng đồ thị như hình vẽ. Cho biết khối lượng của vật bằng \(100\,\,g\), vật dao động giữa hai vị trí cách nhau \(8\,\,cm\). Tần số góc của dao động

  • A.
    \(5\sqrt 3 \,\,rad/s\).
  • B.
    \(5\,\,rad/s\).
  • C.
    \(5\sqrt 2 \,\,rad/s\).
  • D.
    \(2,5\,\,rad/s\).

Lời giải và đáp án

Câu 1 :

Biểu thức nào sau đây xác định cơ năng của con lắc lò xo dao động điều hòa?

  • A.

    \(W = \dfrac{1}{2}k{x^2}\)

  • B.

    \(W = \dfrac{1}{2}{\omega ^2}{A^2}\)

  • C.

    \(W = \dfrac{1}{2}m{v^2}\)

  • D.

    \(W = \dfrac{1}{2}k{A^2}\)

Đáp án : D

Lời giải chi tiết :

Cơ năng của con lắc lò xo dao động điều hòa: \(W = \dfrac{1}{2}k{A^2}\)

Câu 2 :

Cơ năng của một con lắc lò xo tỉ lệ thuận với:

  • A.

    Li độ dao động

  • B.

    Biên độ dao động

  • C.

    Bình phương biên độ dao động

  • D.

    Tần số dao động.

Đáp án : C

Phương pháp giải :

Vận dụng biểu thức cơ năng của con lắc lò xo dao động điều hòa: \(W = \dfrac{1}{2}k{A^2}\)

Lời giải chi tiết :

Ta có, cơ năng của con lắc lò xo dao động điều hòa: \(W = \dfrac{1}{2}k{A^2}\)

=> Cơ năng thỉ lệ thuận với độ cứng k và bình phương biên độ dao động

Câu 3 :

Trong dao động điều hòa, vì cơ năng được bảo toàn nên

  • A.

    Động năng không đổi.

  • B.

    Thế năng không đổi.

  • C.

    Động năng tăng bao nhiêu thì thế năng giảm bấy nhiêu và ngược lại.

  • D.

    Động năng và thế năng hoặc cùng tăng hoặc cùng giảm.

Đáp án : C

Phương pháp giải :

Vận dụng lí thuyết và biểu thức cơ năng

Lời giải chi tiết :

Ta có, Cơ năng bằng tổng động năng và thế năng mà cơ năng bảo toàn => Động năng tăng bao nhiêu thì thế năng giảm bấy nhiêu và ngược lại.

Câu 4 :

Cơ năng của một con lắc lò xo không phụ thuộc vào?

  • A.

    Khối lượng vật nặng

  • B.

    Độ cứng của vật

  • C.

    Biên độ dao động

  • D.

    Điều kiện kích thích ban đầu

Đáp án : A

Phương pháp giải :

Vận dụng biểu thức cơ năng của con lắc lò xo: \(W = \dfrac{1}{2}k{A^2}\)

Lời giải chi tiết :

Ta có, cơ năng của con lắc lò xo

\(W = \dfrac{1}{2}k{A^2}\)

=> Cơ năng của con lắc phụ thuộc vào độ cứng, biên độ dao động của vật

Câu 5 :

Một con lắc lò xo dao động điều hoà với biên độ A. Khi tăng độ cứng của lò xo lên 4 lần và giảm biên độ dao động 2 lần thì cơ năng của con lắc sẽ:

  • A.

    Không đổi

  • B.

    Tăng bốn lần

  • C.

    Tăng hai lần

  • D.

    Giảm hai lần

Đáp án : A

Phương pháp giải :

Vận dụng biểu thức cơ năng của con lắc lò xo: \(W = \dfrac{1}{2}k{A^2}\)

Lời giải chi tiết :

Ta có, cơ năng của con lắc lò xo: \(W = \dfrac{1}{2}k{A^2}\)

=> Khi tăng độ cứng của lò xo lên 4 lần và giảm biên độ dao động 2 lần thì cơ năng của con lắc vẫn không thay đổi

Câu 6 :

Một chất điểm khối lượng $m = 100 (g)$, dao động điều hoà với phương trình $x = 4cos(2t) cm$. Cơ năng trong dao động điều hoà của chất điểm là:

  • A.

    W = 3200 J

  • B.

    W = 3,2 J

  • C.

    W= 0,32 J

  • D.

    W= 0,32 mJ

Đáp án : D

Phương pháp giải :

+ Đọc phương trình dao động điều hòa

+ Áp dụng biểu thức xác định cơ năng của dao động điều hòa: \(W = \dfrac{1}{2}m{\omega ^2}{A^2}\)

Lời giải chi tiết :

Từ phương trình dao động điều hòa, ta có biên độ $A = 4cm$, tần số góc $\omega = 2$

Cơ năng trong dao động điều hòa của chất điểm:

\(W = \dfrac{1}{2}m{\omega ^2}{A^2} = \dfrac{1}{2}0,{1.2^2}.0,{04^2} = 3,{2.10^{ - 4}}J\)

Câu 7 :

Một con lắc lò xo có độ cứng $k = 150 N/m$ và có năng lượng dao động là $E = 0,12 J$. Biên độ dao động của con lắc có giá trị là:

  • A.

    $A = 4 mm$

  • B.

    $A = 4 m$

  • C.

    $A = 0,04 m$

  • D.

    $A = 2 cm$

Đáp án : C

Phương pháp giải :

Áp dụng biểu thức cơ năng của con lắc lò xo: \(W = \dfrac{1}{2}k{A^2}\)

Lời giải chi tiết :

Cơ năng dao động của con lắc lò xo:

\(W = \dfrac{1}{2}k{A^2} \to A = \sqrt {\dfrac{{2{\rm{W}}}}{k}}  = \sqrt {\dfrac{{2.0,12}}{{150}}}  = 0,04m = 4cm\)

Câu 8 :

Một con lắc lò xo dao động điều hòa. Phát biểu nào sau đây là sai?

  • A.

     Động năng của con lắc: \({W_d} = \dfrac{1}{2}k{A^2} - \dfrac{1}{2}m{v^2}\)

  • B.

    Thế năng của con lắc: \({W_t} = \dfrac{1}{2}k{A^2} - \dfrac{1}{2}m{v^2}\)

  • C.

    Động năng của con lắc: \({W_d} = \dfrac{1}{2}m{\omega ^2}{A^2}{\sin ^2}(\omega t + \varphi )\)

  • D.

    Thế năng của con lắc: \({W_t} = \dfrac{1}{2}k{A^2}{\rm{co}}{{\rm{s}}^2}(\omega t + \varphi )\)

Đáp án : A

Lời giải chi tiết :

A - sai vì: Động năng của con lắc lò xo:

\(\begin{array}{l}{W_d} = \dfrac{1}{2}m{v^2} = \dfrac{1}{2}m{\omega ^2}{A^2}{\sin ^2}(\omega t + \varphi )\\ = W - {W_t} = \dfrac{1}{2}k{A^2} - \dfrac{1}{2}k{x^2}\end{array}\)

B, C, D - đúng

Câu 9 :

Chọn phát biểu sai về sự biến đổi năng lượng của một chất điểm dao động điều hòa với chu kỳ T, tần số f ?

  • A.

    Thế năng biến thiên tuần hoàn với chu kỳ T’ = T/2

  • B.

    Động năng biến thiên tuần hoàn với tần số f’ = 2f.

  • C.

    Cơ năng biến thiên tuần hoàn với tần số f’ = 2f

  • D.

    Tổng động năng và thế năng là một số không đổi.

Đáp án : C

Lời giải chi tiết :

Động năng và thế năng của vật biến thiên điều hòa với cùng tần số góc 2𝜔, tần số 2f và chu kì T/2.

Cơ năng được bảo toàn

=> C - sai

Câu 10 :

Một con lắc lò xo dao động điều hòa và vật đang chuyển động từ vị trí biên về vị trí cân bằng thì:

  • A.

    Năng lượng của vật đang chuyển hóa từ thế năng sang động năng

  • B.

    Thế năng tăng dần và động năng giảm dần

  • C.

    Cơ năng của vật tăng dần đến giá trị lớn nhất

  • D.

    Thế năng của vật tăng dần nhưng cơ năng của vật không đổi

Đáp án : A

Phương pháp giải :

Vận dụng lí thuyết về dao động điều hòa và năng lượng của con lắc lò xo

Lời giải chi tiết :

Khi vật đang chuyển động từ vị trí biên về vị trí cân bằng thì: Thế năng giảm - Động năng tăng - Cơ năng bảo toàn.

Câu 11 :

Một vật có khối lượng $m = 200 (g)$, dao động điều hoà với phương trình $x=10cos(5\pi t)cm$ . Tại thời điểm $t=0,5(s)$ thì vật có động năng là:

  • A.

    Wđ = 0,125 J

  • B.

    Wđ = 0,25 J

  • C.

    Wđ = 0,2 J

  • D.

    Wđ = 0,1 J

Đáp án : B

Phương pháp giải :

+ Cách 1: Từ phương trình li độ, viết phương trình vận tốc, thay t vào phương trình vận tốc suy ra v

Áp dụng biểu thức tính động năng của con lắc lò xo: \(W = \frac{1}{2}m{v^2}\)

+ Cách 2: Thay t vào phương trình li độ, từ x dùng hệ thức độc lập A - x - v suy ra vận tốc: \({A^2} = {x^2} + \frac{{{v^2}}}{{{\omega ^2}}}\)

Áp dụng biểu thức tính động năng của con lắc lò xo: \(W = \frac{1}{2}m{v^2}\)

Lời giải chi tiết :

Cách 1:

Phương trình vận tốc của vật: v = x’(t) = -50psin(5pt) cm/s    (1)

Tại t = 0,5s thay vào (1) => v = -50p

=> Động năng của vật:

\({{\text{W}}_d} = \frac{1}{2}m{v^2} = \frac{1}{2}.0,2.{(0,5\pi )^2} = 0,25J\)

Cách 2:

Thay t = 0,5s vào phương trình dao động, ta có: x = 0

=> vmax

=> Động năng của vật khi đó chính bằng cơ năng:

\({{\text{W}}_d} = \frac{1}{2}m{v^2} = \frac{1}{2}m{\omega ^2}{A^2} = \frac{1}{2}.0,2.{(5\pi .0,1)^2} = 0,25J\)

Câu 12 :

Một con lắc lò xo dao động điều hòa với biên độ $A$, tần số góc $ω$. Li độ và vận tốc của vật khi $W_d=nW_t$ là:

  • A.

    \(x =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }},v =  \pm A\sqrt {\dfrac{n}{{n + 1}}} \)

  • B.

    \(x =  \pm A\sqrt {n + 1} ,v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \)

  • C.

    \(x =  \pm \dfrac{A}{{\sqrt {n + 1} }},v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \)

  • D.

    \(x =  \pm A\sqrt {\dfrac{n}{{n + 1}}} ,v =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\)

Đáp án : C

Phương pháp giải :

Xem lí thuyết phần biết động năng tại vị trí có li độ x gấp n lần thế năng của vật: Wđ = nWt

Lời giải chi tiết :

Tại vị trí có động năng gấp n lần thế năng của vật: Wđ = nWt

\(\left\{ \begin{array}{l}{W_d} = n{W_t}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{1}{{n + 1}}W\\{W_d} = \dfrac{n}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x =  \pm \dfrac{A}{{\sqrt {n + 1} }}\\v =  \pm A\omega \sqrt {\dfrac{n}{{n + 1}}} \end{array} \right.\)

 

Câu 13 :

Một vật dao động điều hòa với phương trình $x=10cos(4\pi t)cm$ . Tại thời điểm mà động năng bằng $3$ lần thế năng thì vật ở cách VTCB một khoảng:

  • A.

    3,3 cm

  • B.

    5,0 cm

  • C.

    7,0 cm

  • D.

    10,0 cm

Đáp án : B

Phương pháp giải :

+ Đọc phương trình dao động điều hòa

+ Áp dụng biểu thức xác định li độ dao động của vật khi biết Wđ = nWt :

\(\left\{ \begin{array}{l}{W_d} = n{W_t}\\W = {W_t} + {W_d}\end{array} \right. \to {W_t} = \dfrac{1}{{n + 1}}W \to x =  \pm \dfrac{A}{{\sqrt {n + 1} }}\)

Lời giải chi tiết :

Từ phương trình dao động điều hòa, ta có: Biên độ dao động A = 10cm

Khi Wđ = 3Wt

\(\left\{ \begin{array}{l}{W_d} = 3{W_t}\\W = {W_t} + {W_d}\end{array} \right. \to {W_t} = \dfrac{1}{{3 + 1}}W \to x =  \pm \dfrac{A}{{\sqrt {3 + 1} }} =  \pm 5cm\)

Câu 14 :

Một vật dao động điều hòa với phương trình $x=10cos(4\pi t + \pi /3)cm$ . Tại thời điểm mà thế năng bằng $3$ lần động năng thì vật có tốc độ là:

  • A.

    v = 40π cm/s

  • B.

    v = 20π cm/s

  • C.

    v = 40 cm/s

  • D.

    v = 20 cm/s

Đáp án : B

Phương pháp giải :

+ Đọc phương trình dao động điều hòa

+ Áp dụng biểu thức xác định vận tốc của vật khi biết Wt = nWđ :

\(\left\{ \begin{array}{l}{W_t} = n{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to {W_d} = \dfrac{1}{{n + 1}}W \to v =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\)

Lời giải chi tiết :

Từ phương trình dao động điều hòa, ta có:

+ Biên độ A = 10 cm

+ Tần số góc: ω = 4p

Khi Wđ = 3Wt

\(\left\{ \begin{array}{l}{W_t} = 3{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to {W_d} = \dfrac{1}{{3 + 1}}W \to v =  \pm \dfrac{{A\omega }}{{\sqrt {3 + 1} }} =  \pm 20\pi cm/s\)

Câu 15 :

Một vật dao động điều hòa với tần số góc $ω$, khi thế năng bằng $3$ lần động năng thì li độ $x$ và vận tốc $v$ của vật có mối liên hệ với nhau như thế nào?

  • A.

    ω = 2x.v

  • B.

    x = 2v.ω

  • C.

    3v = 2ω.x

  • D.

    ω.x = \(\sqrt 3 \)v

Đáp án : D

Phương pháp giải :

Áp dụng biểu thức xác định li độ, vận tốc dao động của vật khi biết Wt = nWđ :

\(\left\{ \begin{array}{l}{W_t} = n{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{n}{{n + 1}}W\\{W_d} = \dfrac{1}{{n + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x =  \pm A\sqrt {\dfrac{n}{{n + 1}}} \\v =  \pm \dfrac{{A\omega }}{{\sqrt {n + 1} }}\end{array} \right.\)

Lời giải chi tiết :

Khi Wt = 3Wđ

\(\left\{ \begin{array}{l}{W_t} = 3{W_d}\\W = {W_t} + {W_d}\end{array} \right. \to \left\{ \begin{array}{l}{W_t} = \dfrac{3}{{3 + 1}}W\\{W_d} = \dfrac{1}{{3 + 1}}W\end{array} \right. \to \left\{ \begin{array}{l}x =  \pm A\sqrt {\dfrac{3}{{3 + 1}}} \\v =  \pm \dfrac{{A\omega }}{{\sqrt {3 + 1} }}\end{array} \right. \to \dfrac{x}{v} = \dfrac{{\sqrt 3 }}{\omega }\)

Câu 16 :

Một lò xo có độ cứng k treo thẳng đứng vào điểm cố định, đầu dưới có vật $m = 100 (g)$. Vật dao động điều hòa với tần số $f = 5 Hz$, cơ năng là $W=0,08J$ . Lấy $g = 10 m/s^2$\({\pi ^2} = 10\). Tỉ số động năng và thế năng tại li độ $x = 2 cm$ là:

  • A.

     3

  • B.

    1/3

  • C.

    1/2

  • D.

    4

Đáp án : A

Phương pháp giải :

+ Áp dụng biểu thức xác định thế năng của con lắc lò xo:

\({{\rm{W}}_t} = \dfrac{1}{2}k{{\rm{x}}^2}\)

+ Áp dụng biểu thức cơ năng:

\({\text{W}} = {{\text{W}}_t} + {{\text{W}}_d}\)

Lời giải chi tiết :

Tần số góc:

\(\omega  = 2\pi f = 10\pi (ra{\rm{d}}/s)\)

Tại li độ $x = 2cm$ có:

+ Thế năng:

\({{\rm{W}}_t} = \dfrac{1}{2}k{{\rm{x}}^2} = \dfrac{1}{2}m{\omega ^2}{x^2} = \dfrac{1}{2}0,1.{(10\pi )^2}{(0,02)^2} = 0,02J\)

+ Động năng:

\({{\text{W}}_d} = {\text{W  -  }}{{\text{W}}_t} = 0,08 - 0,02 = 0,06J\)

\(\dfrac{{{{\text{W}}_d}}}{{{{\text{W}}_t}}} = \dfrac{{0,06}}{{0,02}} = 3\)

Câu 17 :

Ở một thời điểm, vận tốc của một vật dao động điều hòa bằng 20% vận tốc cực đại, tỉ số giữa động năng và thế năng của vật là:

  • A.

    $24$

  • B.

    \(\dfrac{1}{{24}}\)

  • C.

    $5$

  • D.

    \(\dfrac{1}{5}\)

Đáp án : B

Phương pháp giải :

+ Áp dụng hệ thức độc lập A-x-v: \({A^2} = {x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}}\)

+ Áp dụng biểu thức xác định động năng của vật: \({{\text{W}}_d} = \dfrac{1}{2}m{v^2}\)

+ Áp dụng biểu thức xác định thế năng của vật: \({{\rm{W}}_t} = \dfrac{1}{2}k{{\rm{x}}^2}\)

Lời giải chi tiết :

Khi v = 20%vmax = 0,2 Aω

Áp dụng hệ thức độ lập ta có:

\({A^2} = {x^2} + \dfrac{{{v^2}}}{{{\omega ^2}}} \to {x^2} = {A^2} - \dfrac{{{v^2}}}{{{\omega ^2}}} = {A^2} - \dfrac{{{{(0,2A\omega )}^2}}}{{{\omega ^2}}} = 0,96{A^2}\)

Khi đó, ta có:

+ Động năng của vật: \({{\text{W}}_d} = \dfrac{1}{2}m{v^2} = \dfrac{1}{2}m{(0,2)^2}{\omega ^2}{A^2}\)

+ Thế năng của vật: \({{\rm{W}}_t} = \dfrac{1}{2}k{{\rm{x}}^2} = \dfrac{1}{2}m{\omega ^2}{x^2} = \dfrac{1}{2}m{\omega ^2}0,96.{A^2}\)

\(\dfrac{{{{\text{W}}_d}}}{{{{\text{W}}_t}}} = \dfrac{{\dfrac{1}{2}m{{(0,2)}^2}{\omega ^2}{A^2}}}{{\dfrac{1}{2}m{\omega ^2}0,96.{A^2}}} = \dfrac{1}{{24}}\) 

Câu 18 :

Một vật dao động điều hòa với chu kỳ T và biên độ là A. Khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là?

  • A.

    \(\dfrac{T}{2}\)

  • B.

    \(\dfrac{T}{4}\)

  • C.

    \(\dfrac{T}{6}\)

  • D.

    \(\dfrac{T}{8}\)

Đáp án : B

Phương pháp giải :

+ Áp dụng biểu thức xác định cơ năng:

\({\rm{W}} = {{\rm{W}}_t} + {{\rm{W}}_{\rm{d}}}\)

+ Sử dụng trục thời gian suy ra từ vòng tròn

Lời giải chi tiết :

Ta có:

\({{\text{W}}_t} = {{\text{W}}_d} \to 2{{\text{W}}_t} = {\text{W}} \to x =  \pm \dfrac{A}{{\sqrt 2 }}\)

Ta có, khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là \(\dfrac{T}{4}\)

Câu 19 :

Một vật dao động điều hòa với chu kỳ T và biên độ là A. Ban đầu vật ở vị trí cân bằng, khoảng thời gian ngắn nhất kể từ khi vật dao động đến thời điểm mà động năng bằng thế năng là:

  • A.

     tmin = T/4

  • B.

    tmin = T/8

  • C.

    tmin = T/6

  • D.

    tmin = 3T/8

Đáp án : B

Phương pháp giải :

+ Áp dụng biểu thức xác định cơ năng:

\({\rm{W}} = {{\rm{W}}_t} + {{\rm{W}}_{\rm{d}}}\)

+ Sử dụng trục thời gian suy ra từ vòng tròn

Lời giải chi tiết :

Vị trí:

\({{\text{W}}_t} = {{\text{W}}_d} \to 2{{\text{W}}_t} = {\text{W}} \to x =  \pm \dfrac{A}{{\sqrt 2 }}\)

=> Khoảng thời gian ngắn nhất kể từ khi vật dao động đến thời điểm mà động năng bằng thế năng là: \(\dfrac{T}{8}\)

Câu 20 :

Con lắc lò xo dao động theo phương ngang với phương trình \(x = Acos(\omega t + \varphi )\). Cứ sau những khoảng thời gian bằng nhau và bằng \(\dfrac{\pi }{{40}}\left( s \right)\) thì động năng của vật bằng thế năng của lò xo. Con lắc dao động điều hoà với tần số góc:

  • A.

    \(\omega = 20{\rm{ }}rad/s\)

  • B.

    \(\omega = 80{\rm{ }}rad/s\)

  • C.

    \(\omega = 40{\rm{ }}rad/s\)

  • D.

    \(\omega = 10{\rm{ }}rad/s\)

Đáp án : A

Phương pháp giải :

+ Áp dụng biểu thức xác định cơ năng: \({\rm{W}} = {{\rm{W}}_t} + {{\rm{W}}_{\rm{d}}}\)

+ Sử dụng trục thời gian suy ra từ vòng tròn

+ Áp dụng biểu thức mối liên hệ giữa tần số góc và chu kì dao động: \(\omega  = \frac{{2\pi }}{T}\)  

Lời giải chi tiết :

Ta có:

\({{\text{W}}_t} = {{\text{W}}_d} \to 2{{\text{W}}_t} = {\text{W}} \to x =  \pm \frac{A}{{\sqrt 2 }}\)

Ta có, khoảng thời gian giữa hai lần liên tiếp động năng bằng thế năng là \(\dfrac{T}{4}\)

Theo đầu bài, ta có:

\(\begin{array}{l}\dfrac{\pi }{{40}} = \dfrac{T}{4} \to T = \dfrac{\pi }{{10}}\\\omega  = \dfrac{{2\pi }}{T} = \dfrac{{2\pi }}{{\dfrac{\pi }{{10}}}} = 20(ra{\rm{d}}/s)\end{array}\)

Câu 21 :

Một chất điểm có khối lượng m = 1 kg dao động điều hoà với chu kì T = π/5 (s). Biết năng lượng của nó là 0,02 J. Biên độ dao động của chất điểm là:

  • A.

     A = 2 cm 

  • B.

    A = 4 cm

  • C.

    A = 6,3 cm

  • D.

    A = 6 cm

Đáp án : A

Phương pháp giải :

+ Áp dụng công thức tính tần số góc: \(\omega  = \dfrac{{2\pi }}{T}\)

+ Áp dụng biểu thức tính cơ năng: \({\rm{W = }}\dfrac{1}{2}m{\omega ^2}{A^2}\)

Lời giải chi tiết :

Ta có: tần số góc

\(\omega  = \dfrac{{2\pi }}{T} = \dfrac{{2\pi }}{{\dfrac{\pi }{5}}} = 10(ra{\rm{d}}/s)\)

Cơ năng của dao động:

\({\rm{W = }}\dfrac{1}{2}m{\omega ^2}{A^2} \to A = \sqrt {\dfrac{{2{\rm{W}}}}{{m{\omega ^2}}}}  = \sqrt {\dfrac{{2.0,02}}{{1{{(10)}^2}}}}  = 0,02m = 2cm\)

Câu 22 :

Một chất điểm dao động điều hòa theo phương trình x = Acos(4πt – π/6) cm. Trong một giây đầu tiên từ thời điểm t = 0, chất điểm qua li độ mà động năng bằng thế năng bao nhiêu lần?

  • A.

    4 lần.

  • B.

    6 lần.

  • C.

    7 lần

  • D.

    8 lần.

Đáp án : D

Phương pháp giải :

+ Áp dụng biểu thức xác định chu kì dao động: \(T = \dfrac{{2\pi }}{\omega }\)

+ Xác định vị trí tại thời điểm ban đầu: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\varphi \\v =  - A\omega \sin \varphi \end{array} \right.\)

+ Áp dụng biểu thức xác định cơ năng: \({\rm{W}} = {{\rm{W}}_t} + {{\rm{W}}_{\rm{d}}}\)

Lời giải chi tiết :

Chu kì dao động của chất điểm:

\(T = \dfrac{{2\pi }}{\omega } = \dfrac{{2\pi }}{{4\pi }} = 0,5{\rm{s}}\)

Tại t = 0: \(\left\{ \begin{array}{l}x = Ac{\rm{os}}\left( { - \dfrac{\pi }{6}} \right) = \dfrac{{A\sqrt 3 }}{2}\\v =  - A\omega \sin \left( { - \dfrac{\pi }{6}} \right) > 0\end{array} \right.\)

Tại vị trí: \({{\text{W}}_t} = {{\text{W}}_d} \to 2{{\text{W}}_t} = {\text{W}} \to x =  \pm \dfrac{A}{{\sqrt 2 }}\)

Ta có: $1s = 2T$

=> Sau $1s$, chất điểm lại quay về vị trí ban đầu

Mặt khác, trong $1$ chu kì chất điểm đi qua li độ mà động năng bằng thế năng $4$ lần

=> Trong $1s (2T)$ chất điểm đi qua li độ có động năng bằng thế năng $2.4 = 8$ lần

Câu 23 :

Một con lắc lò xo có m = 100 (g) dao động điều hoà với cơ năng W = 2 mJ và gia tốc cực đại amax = 80 cm/s2. Biên độ và tần số góc của dao động là:

  • A.

    A = 0,005 cm và ω = 40 rad/s

  • B.

    A = 5 cm và ω = 4 rad/s

  • C.

    A = 10 cm và ω = 2 rad/s

  • D.

    A = 4 cm và ω = 5 rad/s

Đáp án : B

Phương pháp giải :

+ Áp dụng biểu thức tính cơ năng:\({\rm{W = }}\dfrac{1}{2}m{\omega ^2}{A^2}\)

+ Áp dụng biểu thức tính gia tốc cực đại: \({a_{{\rm{max}}}} = {\omega ^2}A\)      

Lời giải chi tiết :

Ta có:

+ Cơ năng: \({\rm{W = }}\dfrac{1}{2}m{\omega ^2}{A^2}\)

+ Gia tốc cực đại: \({a_{{\rm{max}}}} = {\omega ^2}A\)

\( \to \dfrac{{\rm{W}}}{{{a_{{\rm{max}}}}}} = \dfrac{{mA}}{2} = \dfrac{{{{2.10}^{ - 3}}}}{{0,8}} = 2,{5.10^{ - 3}} \to A = \dfrac{{2.2,{{5.10}^{ - 3}}}}{m} = \dfrac{{2.2,{{5.10}^{ - 3}}}}{{0,1}} = 0,05m = 5cm\)

thay vào amax

\( \to \omega  = \sqrt {\dfrac{{{a_{{\rm{max}}}}}}{A}}  = \sqrt {\dfrac{{0,8}}{{0,05}}}  = 4{\rm{r}}a{\rm{d}}/s\)

Câu 24 :

Một con lắc lò xo dao động điều hòa gồm vật nặng có khối lượng \(m = 100g\) , đồ thị thế năng theo thời gian của con lăc như hình vẽ. Biết \({t_2} - {t_1} = 0,05s\), lấy \({\pi ^2} = 10\) . Biên độ và chu kì dao động của con lắc là:

  • A.

    $A=0,8 cm,T=0,1s$

  • B.

    $A = 0,8 cm, T = 0,2s$

  • C.

    $A = 0,4 cm, T = 0,1s$

  • D.

    $A = 0,4 cm, T = 0,2s$

Đáp án : C

Phương pháp giải :

+ Đọc đồ thị \({W_t} - {\rm{ }}t\)

+ Thế năng dao động tuần hoàn với chu kì: \(T' = \dfrac{T}{2}\)

+ Áp dụng biểu thức tính thế năng cực đại: \({{\rm{W}}_{{t_{{\rm{max}}}}}}{\rm{ = }}\dfrac{1}{2}m{\omega ^2}{A^2}\)

Lời giải chi tiết :

Gọi \(T'\): chu kì tuần hoàn của thế năng

Ta có: \(T' = \dfrac{T}{2}\)

Từ đồ thị Wt - t, ta có:

\(\begin{array}{l}{t_2} - {t_1} = {\rm{ }}0,05s = T' = \dfrac{T}{2} \to T = 0,1s\\ \to \omega  = \dfrac{{2\pi }}{T} = 20\pi \left( {rad/s} \right)\end{array}\)

\({{\rm{W}}_{{t_{{\rm{max}}}}}}{\rm{ = }}\dfrac{1}{2}m{\omega ^2}{A^2} = 3,{2.10^{ - 3}} \to A = \sqrt {\dfrac{{2{{\rm{W}}_{{t_{{\rm{max}}}}}}}}{{m{\omega ^2}}}}  = \sqrt {\dfrac{{2.3,{{2.10}^{ - 3}}}}{{0,1{{(20\pi )}^2}}}}  = {4.10^{ - 3}}m = 0,4cm\)

Câu 25 :

Một vật có khối lượng $400g$ dao động điều hòa có đồ thị động năng như hình vẽ. Tại thời điểm $t = 0$ vật đang chuyển động theo chiều dương, lấy $\pi^2=10$. Phương trình dao động của vật là: 

  • A.

     \(x = 10c{\rm{os}}\left( {2\pi t + \dfrac{\pi }{3}} \right)cm\)

  • B.

    \(x = 10c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{3}} \right)cm\)

  • C.

    \(x = 5c{\rm{os}}\left( {2\pi t + \dfrac{\pi }{3}} \right)cm\)

  • D.

    \(x = 5c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{3}} \right)cm\)

Đáp án : D

Phương pháp giải :

+ Đọc đồ thị Wđ - t

+ Áp dụng biểu thức xác định cơ năng: \({\rm{W}} = {{\rm{W}}_t} + {{\rm{W}}_{\rm{d}}}\)

+ Áp dụng biểu thức tính động năng cực đại: \({{\rm{W}}_{{{\rm{d}}_{{\rm{max}}}}}} = \dfrac{1}{2}m{\omega ^2}{A^2}\)

+ Viết phương trình dao động điều hòa

Lời giải chi tiết :

Từ đồ thị, ta có:

+ Tại thời điểm ban đầu (t =0) :

\(\begin{array}{l}{{\rm{W}}_d} = 0,015 \to {{\rm{W}}_t} = 0,02 - 0,015 = {5.10^{ - 3}}J = \dfrac{{\rm{W}}}{4}\\ \to {x_0} =  \pm \dfrac{A}{2}\end{array}\)

+ Vị trí có Wđ = 0 lần thứ nhất: <=> x1 = ±A

Dựa vào đồ thị ta suy ra: x0 = A/2 và x1 = A

=> Khoảng thời gian vật đi từ x0 đến x1 là:

\(\Delta t = \dfrac{T}{6} = \dfrac{1}{6}s \to T = 1{\rm{s}} \to \omega  = \dfrac{{2\pi }}{T} = 2\pi (ra{\rm{d}}/s)\)

\({{\rm{W}}_{{{\rm{d}}_{{\rm{max}}}}}} = \dfrac{1}{2}m{\omega ^2}{A^2} = 0,02 \to A = \sqrt {\dfrac{{2{{\rm{W}}_{{d_{{\rm{max}}}}}}}}{{m{\omega ^2}}}}  = \sqrt {\dfrac{{2.0,02}}{{0,4.{{(2\pi )}^2}}}}  = 0,05m = 5cm\)

Tại t = 0:

\(\left\{ \begin{array}{l}{x_0} = Ac{\rm{os}}\varphi {\rm{ = }}\dfrac{A}{2}\\v =  - {\rm{Asin}}\varphi  > 0\end{array} \right. \to \left\{ \begin{array}{l}{\rm{cos}}\varphi {\rm{ = }}\frac{1}{2}\\\sin \varphi  < 0\end{array} \right. \to \varphi  =  - \dfrac{\pi }{3}\)

=> Phương trình dao động của vật: \(x = 5c{\rm{os}}\left( {2\pi t - \dfrac{\pi }{3}} \right)cm\)

Câu 26 :

Con lắc lò xo dao động điều hòa trên mặt phẳng ngang không ma sát. Khi vật ở vị trí biên, ta giữ chặt một phần của lò xo làm cơ năng của vật giảm \(10\% \) thì biên độ dao động của hệ vật sẽ

  • A.
     giảm \(\sqrt {10} \% \)        
  • B.
     tăng \(\sqrt {10} \% \)   
  • C.
     giảm \(10\% \)
  • D.
     tăng \(10\% \)

Đáp án : C

Phương pháp giải :

Cơ năng của con lắc lò xo: \({\rm{W}} = \dfrac{1}{2}k{A^2}\)       

Cắt lò xo: \(k'\Delta l' = k\Delta l\)

Lời giải chi tiết :

Cơ năng ban đầu của con lắc là: \({\rm{W}} = \dfrac{1}{2}k{A^2}\)

Giữ chặt một phần của lò xo, biên độ mới của con lắc và độ cứng của lò xo:

\(k'A' = kA \Rightarrow k' = \dfrac{{kA}}{{A'}}\)

Cơ năng của con lắc giảm 10%, cơ năng còn lại là:

\(\begin{array}{l}{\rm{W}}' = \dfrac{1}{2}k'A{'^2} = 0,9W = 0,9.\dfrac{1}{2}k{A^2}\\ \Rightarrow \dfrac{{kA}}{{A'}}.A{'^2} = 0,9.k{A^2} \Rightarrow A' = 0,9A = A.90\% \\ \Rightarrow A - A' = A.10\% \end{array}\)

Câu 27 :

Một vật nặng gắn vào một lò xo nhẹ có độ cứng k = 20 N/m thực hiện dao động điều hoà với biên độ A = 5cm. Động năng của vật khi nó cách vị trí cân bằng 4 cm là

  • A.
    0,04 J.
  • B.
    0,0016 J.
  • C.
    0,009 J.
  • D.
    0,024 J.

Đáp án : C

Phương pháp giải :

Thế năng của con lắc lò xo: \({{\text{W}}_{t}}=\frac{1}{2}k{{x}^{2}}\)

Cơ năng của con lắc: \(\text{W}={{\text{W}}_{t}}+{{\text{W}}_{d}}=\frac{1}{2}k{{A}^{2}}\)

Lời giải chi tiết :

Áp dụng định lí bảo toàn cơ năng cho con lắc, ta có:

\(\begin{align}& \text{W}={{\text{W}}_{t}}+{{\text{W}}_{d}}\Rightarrow \frac{1}{2}k{{A}^{2}}=\frac{1}{2}k{{x}^{2}}+{{\text{W}}_{d}} \\& \Rightarrow {{\text{W}}_{d}}=\frac{1}{2}k{{A}^{2}}-\frac{1}{2}k{{x}^{2}}=0,009\,\,\left( J \right) \\\end{align}\)

Câu 28 :

Một con lắc lò xo có độ cứng \(k\), khối lượng vật nhỏ \(m\) dao động điều hoà. Tại thời điểm mà li độ và vận tốc của vật tương ứng là \(x\) và \(v\) thì động năng của vật là

  • A.
    \({W_d} = \frac{1}{2}m{x^2}\)
  • B.
    \({W_d} = \frac{1}{2}k{x^2}\)
  • C.
    \({W_d} = \frac{1}{2}m{v^2}.\)
  • D.
    \({W_d} = \frac{1}{2}k{v^2}\)

Đáp án : C

Phương pháp giải :

Công thức tính động năng: \({{\rm{W}}_d} = \frac{1}{2}m{v^2}.\)

Lời giải chi tiết :

Động năng của vật là:\({{\rm{W}}_d} = \frac{1}{2}m{v^2}.\)

Câu 29 :

Xét một con lắc lò xo gồm vật nhỏ và lò xo nhẹ dao động điều hòa trên mặt phẳng nằm ngang với biên độ A. Chọn gốc thế năng tại vị trí cân bằng. Tại vị trí con lắc có động năng bằng cơ năng, li độ của vật có giá trị là:

  • A.

    \( \pm \dfrac{A}{2}\)

  • B.

    \(0\)

  • C.

    \( \pm A\)

  • D.

    \( \pm \dfrac{{A\sqrt 2 }}{2}\)

Đáp án : B

Phương pháp giải :

Sử dụng công thức năng lượng của con lắc lò xo.

Lời giải chi tiết :

Ta có:

\({\rm{W}} = {{\rm{W}}_d} + {{\rm{W}}_t}\)

\( \Leftrightarrow \dfrac{1}{2}k{A^2} = \dfrac{1}{2}m{v^2} + \dfrac{1}{2}k{{\rm{x}}^2}\)

Tại VTCB thế năng bằng 0.

Vị trí con lắc có động năng bằng cơ năng => là vị trí động năng cực đại => VTCB.

Tại VTCB, li độ x = 0.

Câu 30 :

Động năng dao động của một con lắc lò xo được mô tả theo thế năng dao động của nó bằng đồ thị như hình vẽ. Cho biết khối lượng của vật bằng \(100\,\,g\), vật dao động giữa hai vị trí cách nhau \(8\,\,cm\). Tần số góc của dao động

  • A.
    \(5\sqrt 3 \,\,rad/s\).
  • B.
    \(5\,\,rad/s\).
  • C.
    \(5\sqrt 2 \,\,rad/s\).
  • D.
    \(2,5\,\,rad/s\).

Đáp án : C

Phương pháp giải :

Sử dụng kĩ năng đọc đồ thị

Độ dài quỹ đạo dao động: \(L = 2A\)

Thế năng của con lắc lò xo: \({{\rm{W}}_t} = \dfrac{1}{2}m{\omega ^2}{x^2}\)

Lời giải chi tiết :

Độ dài quỹ đạo dao động của con lắc là:

\(L = 2A \Rightarrow A = \dfrac{L}{2} = \dfrac{8}{2} = 4\,\,\left( {cm} \right) = 0,04\,\,\left( m \right)\)

Từ đồ thị ta thấy khi động năng bằng 0, thế năng của con lắc:

\(\begin{array}{l}{{\rm{W}}_{t\max }} = \dfrac{1}{2}m{\omega ^2}{A^2} = {4.10^{ - 3}}\,\,\left( J \right)\\ \Rightarrow \dfrac{1}{2}0,1.{\omega ^2}.0,{04^2} = {4.10^{ - 3}} \Rightarrow \omega  = 5\sqrt 2 \,\,\left( {rad/s} \right)\end{array}\)

Trắc nghiệm Bài 2. Chiều dài con lắc lò xo - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 2. Chiều dài con lắc lò xo Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 2. Thời gian nén - giãn của con lắc lò xo - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 2. Thời gian nén - giãn của con lắc lò xo Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 2. Va chạm con lắc lò xo - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 2. Va chạm con lắc lò xo Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 3. Con lắc đơn - Các đại lượng đặc trưng - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 3. Con lắc đơn - Các đại lượng đặc trưng Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 3. Năng lượng, vận tốc - lực của con lắc đơn - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 3. Năng lượng, vận tốc - lực của con lắc đơn Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 4. Sự thay đổi chu kì con lắc đơn khi chịu thêm tác dụng của lực lạ - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 4. Sự thay đổi chu kì con lắc đơn khi chịu thêm tác dụng của lực lạ Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 4. Sự nhanh chậm của đồng hồ quả lắc - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 4. Sự nhanh chậm của đồng hồ quả lắc Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 4. Con lắc vướng đinh - sự trùng phùng của hai con lắc - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 4. Con lắc vướng đinh - sự trùng phùng của hai con lắc Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp bài tập các loại dao động - Vật Lí 12

Luyện tập và củng cố kiến thức Tổng hợp bài tập các loại dao động Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp bài tập dao động điều hòa - Vật Lí 12

Luyện tập và củng cố kiến thức Tổng hợp bài tập dao động điều hòa Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp bài tập dao động cơ (phần 1) - Vật Lí 12

Luyện tập và củng cố kiến thức Tổng hợp bài tập dao động cơ (phần 1) Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp bài tập dao động cơ (phần 2) - Vật Lí 12

Luyện tập và củng cố kiến thức Tổng hợp bài tập dao động cơ (phần 2) Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Tổng hợp bài tập dao động cơ (phần 3) - Vật Lí 12

Luyện tập và củng cố kiến thức Tổng hợp bài tập dao động cơ (phần 3) Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Ôn tập chương 1 - Vật Lí 12

Luyện tập và củng cố kiến thức Ôn tập chương 1 Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 2. Con lắc lò xo - Bài tập chu kì, tần số, tần số góc của con lắc lò xo - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 2. Con lắc lò xo - Bài tập chu kì, tần số, tần số góc của con lắc lò xo Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1. Bài tập quãng đường, tốc độ trung bình - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 1. Bài tập quãng đường, tốc độ trung bình Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1. Ứng dụng vòng tròn lượng giác - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 1. Ứng dụng vòng tròn lượng giác Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1. Viết phương trình dao động điều hòa - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 1. Viết phương trình dao động điều hòa Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1. Dao động điều hòa - Các đại lượng đặc trưng - Vật Lí 12

Luyện tập và củng cố kiến thức Bài 1. Dao động điều hòa - Các đại lượng đặc trưng Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1. Dao động điều hòa - Vật Lí 12

Luyện tập và củng cố kiến thức bài 1 dao động điều hòa Vật lí 12 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết