Trắc nghiệm Các dạng toán về dấu hiệu chia hết cho 3, cho 9 Toán 6 Chân trời sáng tạo
Đề bài
Cho \(\overline {55a62} \) chia hết cho 3. Số thay thế cho \(a\) có thể là
-
A.
1
-
B.
2
-
C.
3
-
D.
5
Cho số \(A = \overline {a785b} \) . Tìm tổng các chữ số $a$ và $b$ sao cho $A$ chia $9$ dư $2.$
-
A.
\(\left( {a + b} \right) \in \left\{ {9;18} \right\}\)
-
B.
\(\left( {a + b} \right)\in \left\{ {0;9;18} \right\}\)
-
C.
\(\left( {a + b} \right) \in \left\{ {1;2;3} \right\}\)
-
D.
\(\left( {a + b} \right)\in \left\{ {4;5;6} \right\}\)
Cho số \(N = \overline {5a27b} \) .Có bao nhiêu số N sao cho N là số có $5$ chữ số khác nhau và N chia cho $3$ thì dư $2,$ N chia cho $5$ thì dư $1$ và N chia hết cho $2.$
-
A.
\(3\)
-
B.
\(4\)
-
C.
\(5\)
-
D.
\(6\)
Tìm các chữ số $x, y$ biết rằng: \(\overline {23x5y} \) chia hết cho $2; 5$ và $9.$
-
A.
\(x = 0;y = 6\)
-
B.
\(x = 6;y = 0\)
-
C.
\(x = 8;y = 0\)
-
D.
\(x = 0;y = 8\)
Có bao nhiêu số tự nhiên dạng \(\overline {5a42b} \) chia hết cho cả \(2;5\) và \(3?\)
-
A.
\(3\)
-
B.
\(4\)
-
C.
\(2\)
-
D.
\(1\)
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
Dùng ba trong bốn chữ số \(5;8;4;0\) hãy lập ra các số tự nhiên chia hết cho \(3\) mà không chia hết cho \(9.\)
-
A.
\(840;804;408\)
-
B.
\(840;804;408;480\)
-
C.
\(540;450;405\)
-
D.
\(540;450;405;504\)
Có bao nhiêu cặp số \(a;b\) sao cho số \(\overline {52ab} \) chia hết cho \(9\) và chia cho \(5\) dư \(2.\)
-
A.
\(4\)
-
B.
\(1\)
-
C.
\(2\)
-
D.
\(3\)
Tìm \(x \in \mathbb{N}\), biết \(x\) chia hết cho 3 và \(360 < x < 370\)?
-
A.
$360; 366; 369$
-
B.
$363; 366; 369$
-
C.
$362; 364; 368$
-
D.
$365; 369; 366$
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
Lời giải và đáp án
Cho \(\overline {55a62} \) chia hết cho 3. Số thay thế cho \(a\) có thể là
-
A.
1
-
B.
2
-
C.
3
-
D.
5
Đáp án : C
Tìm điều kiện của \(a\).
Tính tổng các chữ số trong \(\overline {55a62} \)
Tìm \(a\) để tổng đó chia hết cho 3.
Tổng các chữ số của \(\overline {55a62} \) là \(5 + 5 + a + 6 + 2 = a + 18\) để số \(\overline {55a62} \) chia hết cho 3 thì \(a + 18\) phải chia hết cho 3.
Do a là các số tự nhiên từ 0 đến 9 nên
\(\begin{array}{l}0 + 18 \le a + 18 \le 9 + 18\\ \Rightarrow 18 \le a + 18 \le 27\end{array}\)
Số chia hết cho 3 từ 18 đến 27 có thể là các số: 18, 21, 24, 27
Tức là \(a + 18\) có thể nhận các giá trị: 18, 21, 24, 27
Với \(a + 18\) bằng 18 thì \(a = 18 - 18 = 0\)
Với \(a + 18\) bằng 21 thì \(a = 21 - 18 = 3\)
Với \(a + 18\) bằng 24 thì \(a = 24 - 18 = 6\)
Với \(a + 18\) bằng 27 thì \(a = 27 - 18 = 9\)
Vậy số có thể thay thế cho a là một trong các số 0;3;6;9.
Vậy số thay thế cho a trong đề bài chỉ có thể là 3
Cho số \(A = \overline {a785b} \) . Tìm tổng các chữ số $a$ và $b$ sao cho $A$ chia $9$ dư $2.$
-
A.
\(\left( {a + b} \right) \in \left\{ {9;18} \right\}\)
-
B.
\(\left( {a + b} \right)\in \left\{ {0;9;18} \right\}\)
-
C.
\(\left( {a + b} \right) \in \left\{ {1;2;3} \right\}\)
-
D.
\(\left( {a + b} \right)\in \left\{ {4;5;6} \right\}\)
Đáp án : A
Áp dụng: Một số chia $9$ dư bao nhiêu thì tổng các chữ số của nó chia $9$ cũng dư bấy nhiêu.
Ta có: \(a;\,\,b\,\,\, \in \left\{ {0;\,\,1;\,\,2;\,\,3;\,\,4;\,\,5;\,\,6;\,\,7;\,\,8;\,\,9} \right\}\) và \(a \ne 0.\)
A chia $9$ dư $2$ \( \Rightarrow a + 7 + 8 + 5 + b = a + b + 20\) chia $9$ dư $2$ hay \(\left( {a + b + 18} \right)\,\, \vdots \,\,9\) .
Mà \(18 \, \vdots \, 9 \Rightarrow \left( {a + b} \right) \, \vdots \, 9 \Rightarrow \left( {a + b} \right) \in \left\{ {9;18} \right\}\).
Cho số \(N = \overline {5a27b} \) .Có bao nhiêu số N sao cho N là số có $5$ chữ số khác nhau và N chia cho $3$ thì dư $2,$ N chia cho $5$ thì dư $1$ và N chia hết cho $2.$
-
A.
\(3\)
-
B.
\(4\)
-
C.
\(5\)
-
D.
\(6\)
Đáp án : A
Để giải bài toán tìm các chữ số chưa biết của một số, biết số đó chia hết hoặc chia dư cho một vài số cho trước, ta sử dụng các dấu hiệu chia hết, ưu tiên các dấu hiệu cho biết 1 (hoặc 2, 3) chữ số tận cùng (2, 5, 4, 25, 8, 125).
Điều kiện: \(a;\,\,b \in \left\{ {0;\,\,1;\,\,2;\,\,.......;\,\,9} \right\}\)
\(N = \overline {5a27b} \) chia 5 dư 1 nên \(b \in \left\{ {1;6} \right\}\) .
Mà N chia hết cho 2 nên \(b = 6\) , ta được số \(N = \overline {5a276} \) .
Vì N chia 3 dư 2 nên \(5 + a + 2 + 7 + 6 = 20 + a\) chia $3$ dư $2.$ Suy ra \(\left( {18 + a} \right)\,\, \vdots \,\,3\) .
Mà \(18 \vdots 3 \Rightarrow a \vdots 3 \Rightarrow a \in \left\{ {0;3;6;9} \right\}\) (do $a$ là chữ số).
Lại có $N$ là số có $5$ chữ số khác nhau nên \(a \in \left\{ {0;3;9} \right\}\) .
Vậy có ba số $N$ thỏa mãn là các số $50276;53276;59276$.
Tìm các chữ số $x, y$ biết rằng: \(\overline {23x5y} \) chia hết cho $2; 5$ và $9.$
-
A.
\(x = 0;y = 6\)
-
B.
\(x = 6;y = 0\)
-
C.
\(x = 8;y = 0\)
-
D.
\(x = 0;y = 8\)
Đáp án : C
Điều kiện: \(x; y \in \left\{ {0;\,\,1;\,\,2;\,\,.......;\,\,9} \right\}\)
Vì \(\overline {23x5y} \) chia hết cho cả $2$ và $5$ nên \(y = 0\) ta được số \(\overline {23x50} \) .
Số \(\overline {23x50} \,\, \vdots \,\,9 \Rightarrow \left( {2 + 3 + x + 5 + 0} \right)\,\, \vdots \,\,9 \Rightarrow \left( {10 + x} \right)\,\, \vdots \,\,9 \Rightarrow x = 8.\)
Vậy \(x = 8;y = 0\), ta có số $23850.$
Có bao nhiêu số tự nhiên dạng \(\overline {5a42b} \) chia hết cho cả \(2;5\) và \(3?\)
-
A.
\(3\)
-
B.
\(4\)
-
C.
\(2\)
-
D.
\(1\)
Đáp án : A
+ Các số chia hết cho cả $2$ và $5$ có chữ số tận cùng là $0$.
+ Các số chia hết cho $3$ có tổng các chữ số chia hết cho $3$.
Vì số \(\overline {5a42b} \) chia hết cho cả \(2;5\) nên \(b = 0.\)
Để \(\overline {5a42b} \) chia hết cho \(3\) thì \(5 + a + 4 + 2 + 0 = 11 + a\) chia hết cho \(3.\)
Suy ra \(a \in \left\{ {1;4;7} \right\}\).
Vậy có ba số tự nhiên thỏa mãn là \(51420;54420;57420.\)
Tìm số tự nhiên \(\overline {145*} \) chia hết cho cả \(3\) và \(5.\)
-
A.
\(1454\)
-
B.
\(1450\)
-
C.
\(1455\)
-
D.
\(1452\)
Đáp án : C
+ Các số chia hết cho \(5\) có chữ số tận cùng là \(0\) hoặc \(5.\)
+ Các số chia hết cho \(3\) có tổng các chữ số chia hết cho \(3.\)
Từ đó lập luận để tìm các số thỏa mãn.
Vì \(\overline {145*} \) chia hết cho \(5\) nên \(*\) có thể bằng \(0\) hoặc \(5.\)
+ Nếu \(*\) bằng \(0\) thì ta được số \(1450\) có \(1 + 4 + 5 + 0 = 10\not \vdots 3\) nên loại
+ Nếu \(*\) bằng \(5\) thì ta được số \(1455\) có \(1 + 4 + 5 + 5 = 15 \vdots 3\) nên thỏa mãn.
Vậy số cần tìm là \(1455.\)
Dùng ba trong bốn chữ số \(5;8;4;0\) hãy lập ra các số tự nhiên chia hết cho \(3\) mà không chia hết cho \(9.\)
-
A.
\(840;804;408\)
-
B.
\(840;804;408;480\)
-
C.
\(540;450;405\)
-
D.
\(540;450;405;504\)
Đáp án : B
Sử dụng dấu hiệu chia hết cho \(3.\) Ta lập các bộ số có tổng chia hết cho \(3\) mà không chia hết cho \(9.\)
Sau đó tìm ra các số thỏa mãn đề bài từ bộ số tìm được.
Ta thấy chỉ có \(8 + 4 + 0 = 12\) chia hết cho \(3\) nhưng không chia hết cho \(9\) nên các số cần tìm là \(840;480;408;804.\)
Có bao nhiêu cặp số \(a;b\) sao cho số \(\overline {52ab} \) chia hết cho \(9\) và chia cho \(5\) dư \(2.\)
-
A.
\(4\)
-
B.
\(1\)
-
C.
\(2\)
-
D.
\(3\)
Đáp án : D
Sử dụng dấu hiệu chia hết cho \(9\) là tổng các chữ số chia hết cho $9$ và dấu hiệu chia hết cho \(5\) dư \(2\) là có chữ số tận cùng là $2$ hoặc $7$.
Vì \(\overline {52ab} \) chia cho \(5\) dư \(2\) nên \(b \in \left\{ {2;7} \right\}\)
+ Xét \(b = 2\) ta có \(\overline {52a2} \, \vdots \, 9 \Rightarrow 5 + 2 + a + 2 = \left( {9 + a} \right) \, \vdots \, 9\) suy ra \(a \in \left\{ {0;9} \right\}\)
+ Xét \(b = 7\) ta có \(\overline {52a7} \, \vdots \, 9 \Rightarrow 5 + 2 + a + 7 = \left( {14 + a} \right) \, \vdots \, 9\) suy ra \(a \in \left\{ 4 \right\}\)
Vậy \(a = 0;b = 2\) hoặc \(a = 9;b = 2\) hoặc \(a = 4;b = 7.\)
Tìm \(x \in \mathbb{N}\), biết \(x\) chia hết cho 3 và \(360 < x < 370\)?
-
A.
$360; 366; 369$
-
B.
$363; 366; 369$
-
C.
$362; 364; 368$
-
D.
$365; 369; 366$
Đáp án : B
\(360 < x < 370\): Các số từ 361 đến 369.
Sử dụng lý thuyết và dấu hiệu chia hết cho 3 và tìm các số từ 361 đến 369 chia hết cho 3
\(360 < x < 370\): Các số từ 361 đến 369. Đó là 361; 362; 363; 364; 365; 366; 367; 368; 369
Trong các số trên chỉ có số 363; 366; 369 là chia hết cho 3 (Tính tổng các chữ số).
Số \(A = \overline {abcd} - \left( {a + b + c + d} \right)\) chia hết cho số nào dưới đây?
-
A.
\(2\)
-
B.
\(5\)
-
C.
\(9\)
-
D.
\(6\)
Đáp án : C
+ Phân tích \(\overline {abcd} = 1000a + 100b + 10c + d\) từ đó tính được \(A.\)
+ Dựa vào tính chất chia hết của một tổng và dấu hiệu chia hết cho \(9\) để giải bài toán.
Ta có \(A = \overline {abcd} - \left( {a + b + c + d} \right)\)\( = 1000a + 100b + 10c + d - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c + \left( {a + b + c + d} \right) - \left( {a + b + c + d} \right)\)
\( = 999a + 99b + 9c\)
Mà \(999 \, \vdots \, 9;\,99 \, \vdots \, 9;\,9 \, \vdots \, 9\) nên \(A \, \vdots \, 9.\)
Luyện tập và củng cố kiến thức Bài 9: Ước và bội Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về ước và bội Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về số nguyên tố, hợp số, phân tích một số ra thừa số nguyên tố Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 12: Ước chung. Ước chung lớn nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về ước chung, ước chung lớn nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 13: Bội chung. Bội chung nhỏ nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về bội chung, bội chung nhỏ nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài tập ôn tập chương 1: Số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 8: Dấu hiệu chia hết cho 3, cho 9 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về dấu hiệu chia hết cho 2, cho 5 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 7: Dấu hiệu chia hết cho 2, cho 5 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 6: Chia hết và chia có dư. Tính chất chia hết của một tổng Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 5: Thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 4: Lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép trừ và phép chia Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3. Phép trừ và phép chia Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép nhân (tiếp) Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép nhân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 3. Phép cộng và phép nhân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tập hợp số tự nhiên, ghi số tự nhiên Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 2: Tập hợp số tự nhiên. Ghi số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Các dạng toán về tập hợp, phần tử của tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
Luyện tập và củng cố kiến thức Bài 1: Tập hợp. Phần tử của tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết
- Trắc nghiệm Bài tập ôn tập chương 9: Một số yếu tố thống kê Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 2: Xác suất thực nghiệm Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 1: Phép thử nghiệm – Sự kiện Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài tập ôn tập chương 8: Hình học phẳng. Các hình hình học cơ bản Toán 6 Chân trời sáng tạo
- Trắc nghiệm Bài 7: Số đo góc. Các góc đặc biệt Toán 6 Chân trời sáng tạo