Trắc nghiệm Bài 3: Phép trừ và phép chia Toán 6 Chân trời sáng tạo

Đề bài

Câu 1 :

Phép tính \(x - 5\) thực hiện được khi

  • A.

    \(x < 5\)   

  • B.

    \(x \ge 5\)          

  • C.

    \(x < 4\)      

  • D.

    \(x = 3\)

Câu 2 :

Cho phép tính \(231 - 87\). Chọn câu đúng.

  • A.

    \(231\) là số trừ 

  • B.

    \(87\) là số bị trừ      

  • C.

    \(231\) là số bị trừ   

  • D.

    \(87\) là hiệu

Câu 3 :

Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là

  • A.

    \(x\)   

  • B.

    \(6\)          

  • C.

    \(3\)      

  • D.

    \(18\)

Câu 4 :

Tính 1 454-997

  • A.

    575

  • B.

    567

  • C.

    457

  • D.

    754

Câu 5 :

Trong phép chia có dư \(a\) chia cho \(b,\) trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\)\(r\)  duy nhất sao cho:

\(a = b.q + r\)

Khẳng định nào sau đây đúng?

  • A.

    \(r \ge b\)

  • B.

    \(0 < b < r\)

  • C.

    \(0 < r < b\)

  • D.

    \(0 \le r < b\)

Câu 6 :

Biểu diễn phép chia \(445:13\) dưới dạng \(a = b.q + r\)  trong đó  \(0 \le r < b\)

  • A.

    \(445 = 13.34 + 3\)

  • B.

    \(445 = 13.3 + 34\)

  • C.

    \(445 = 34.3 + 13\)

  • D.

    \(445 = 13.34\)

Câu 7 :

Trong các phép chia sau, có bao nhiêu phép chia có dư?

144:3

144:13

144:33

144:30

  • A.
    1
  • B.
    2
  • C.
    3
  • D.
    4
Câu 8 :

Hình ảnh sau minh họa cho phép toán nào?

  • A.

    Phép cộng của 1 và 2

  • B.

    Phép trừ của 3 và 2

  • C.

    Phép cộng của 1 và 3

  • D.

    Phép trừ của 3 và 1

Câu 9 :

Dạng tổng quát của số tự nhiên chia hết cho \(3\) là:

  • A.

    \(3k\,\left( {k \in N} \right)\)   

  • B.

    \(5k + 3\,\left( {k \in N} \right)\)          

  • C.

    \(3k + 1\,\left( {k \in N} \right)\)      

  • D.

    \(3k + 2\,\left( {k \in N} \right)\)

Câu 10 :

Dạng tổng quát của số tự nhiên chia cho \(5\) dư \(2\) là

  • A.

    \(2k + 5\,\left( {k \in N} \right)\)   

  • B.

    \(5k + 2\,\left( {k \in N} \right)\)          

  • C.

    \(2k\,\left( {k \in N} \right)\)      

  • D.

    \(5k + 4\,\left( {k \in N} \right)\)

Câu 11 :

Tình nhanh \(49.15 - 49.5\) ta được kết quả là

  • A.

    \(490\)   

  • B.

    \(49\)          

  • C.

    \(59\)      

  • D.

    \(4900\)

Câu 12 :

Kết quả của phép tính $12.100 + 100.36 - 100.19$ là

  • A.

    \(29000\)             

  • B.

    \(3800\)          

  • C.

    \(290\)      

  • D.

    \(2900\)

Lời giải và đáp án

Câu 1 :

Phép tính \(x - 5\) thực hiện được khi

  • A.

    \(x < 5\)   

  • B.

    \(x \ge 5\)          

  • C.

    \(x < 4\)      

  • D.

    \(x = 3\)

Đáp án : B

Phương pháp giải :

Phép tính \(a - b\) thực hiện được khi \(a \ge b.\)

Lời giải chi tiết :

Phép tính \(x - 5\) thực hiện được khi \(x \ge 5.\)

Câu 2 :

Cho phép tính \(231 - 87\). Chọn câu đúng.

  • A.

    \(231\) là số trừ 

  • B.

    \(87\) là số bị trừ      

  • C.

    \(231\) là số bị trừ   

  • D.

    \(87\) là hiệu

Đáp án : C

Phương pháp giải :

Trong phép trừ $a - b = x$  thì  \(a\) là số bị trừ; \(b\) là số trừ và \(x\) là hiệu.

Lời giải chi tiết :

Trong phép trừ \(231 - 87\) thì \(231\) là số bị trừ và \(87\) là số trừ nên C đúng.

Câu 3 :

Cho phép tính \(x:3 = 6\), khi đó thương của phép chia là

  • A.

    \(x\)   

  • B.

    \(6\)          

  • C.

    \(3\)      

  • D.

    \(18\)

Đáp án : B

Phương pháp giải :

Ta sử dụng (số bị chia) : (số chia) = (thương) để xác định thương của phép chia

Lời giải chi tiết :

Phép chia \(x:3 = 6\) có \(x\) là số bị chia; \(3\) là số chia và \(6\) là thương.

Nên thương của phép chia là \(6.\)

Câu 4 :

Tính 1 454-997

  • A.

    575

  • B.

    567

  • C.

    457

  • D.

    754

Đáp án : C

Phương pháp giải :

- Thêm vào số bị trừ và số trừ cùng một số sao cho số trừ mới là số tròn chục, tròn trăm, tròn nghìn.

- Tính: (số bị trừ mới) – (số trừ mới).

Lời giải chi tiết :

1 454-997 = (1 454+3)-(997+3)

= 1 457-1 000=457

Câu 5 :

Trong phép chia có dư \(a\) chia cho \(b,\) trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\)\(r\)  duy nhất sao cho:

\(a = b.q + r\)

Khẳng định nào sau đây đúng?

  • A.

    \(r \ge b\)

  • B.

    \(0 < b < r\)

  • C.

    \(0 < r < b\)

  • D.

    \(0 \le r < b\)

Đáp án : C

Phương pháp giải :

Định nghĩa về phép chia hết và phép chia có dư.

Lời giải chi tiết :

Khi chia a cho b, trong đó \(b \ne 0,\) ta luôn tìm được đúng hai số tự nhiên \(q\)\(r\)  duy nhất sao cho:

\(a = b.q + r\)       trong đó  \(0 \le r < b\)

Phép chia a cho b là phép chia có dư nên \(r \ne 0\)

Vậy \(0 < r < b\).

Câu 6 :

Biểu diễn phép chia \(445:13\) dưới dạng \(a = b.q + r\)  trong đó  \(0 \le r < b\)

  • A.

    \(445 = 13.34 + 3\)

  • B.

    \(445 = 13.3 + 34\)

  • C.

    \(445 = 34.3 + 13\)

  • D.

    \(445 = 13.34\)

Đáp án : A

Phương pháp giải :

Đặt tính rồi tính.

Xác định a,b,q,r trong phép chia vừa nhận được.

Lời giải chi tiết :

Số bị chia là \(b = 445\), số chia là \(b = 13\) thương \(q = 34\), số dư là \(r = 3\). Ta biểu diễn phép chia như sau: \(445 = 13.34 + 3\)

Câu 7 :

Trong các phép chia sau, có bao nhiêu phép chia có dư?

144:3

144:13

144:33

144:30

  • A.
    1
  • B.
    2
  • C.
    3
  • D.
    4

Đáp án : C

Phương pháp giải :

Đặt tính rồi tính.

Đếm số các phép chia có dư.

Lời giải chi tiết :

         

      

Vậy có 3 phép chia có dư

Câu 8 :

Hình ảnh sau minh họa cho phép toán nào?

  • A.

    Phép cộng của 1 và 2

  • B.

    Phép trừ của 3 và 2

  • C.

    Phép cộng của 1 và 3

  • D.

    Phép trừ của 3 và 1

Đáp án : B

Lời giải chi tiết :

Số 3 và số 1 cùng chiều từ trái sang phải, số 2 ngược chiều với hai số này. Mà ta có 3-2=1 nên hình ảnh trên minh họa cho phép trừ 3-2.

Câu 9 :

Dạng tổng quát của số tự nhiên chia hết cho \(3\) là:

  • A.

    \(3k\,\left( {k \in N} \right)\)   

  • B.

    \(5k + 3\,\left( {k \in N} \right)\)          

  • C.

    \(3k + 1\,\left( {k \in N} \right)\)      

  • D.

    \(3k + 2\,\left( {k \in N} \right)\)

Đáp án : A

Phương pháp giải :

Sử dụng các số hạng chia hết cho \(a\) có dạng $x = a.k\,\left( {k \in N} \right)$

Lời giải chi tiết :

Các số hạng chia hết cho \(3\) có dạng tổng quát là \(x = 3k\,\left( {k \in N} \right)\)

Câu 10 :

Dạng tổng quát của số tự nhiên chia cho \(5\) dư \(2\) là

  • A.

    \(2k + 5\,\left( {k \in N} \right)\)   

  • B.

    \(5k + 2\,\left( {k \in N} \right)\)          

  • C.

    \(2k\,\left( {k \in N} \right)\)      

  • D.

    \(5k + 4\,\left( {k \in N} \right)\)

Đáp án : B

Phương pháp giải :

Số tự nhiên \(a\) chia cho \(b\) được thương \(q\) và  dư $r$ có dạng \(a = b.q + r.\)

Lời giải chi tiết :

Dạng tổng quát của số tự nhiên chia cho \(5\) dư \(2\) là \(a = 5k + 2\,\left( {k \in N} \right).\)

Câu 11 :

Tình nhanh \(49.15 - 49.5\) ta được kết quả là

  • A.

    \(490\)   

  • B.

    \(49\)          

  • C.

    \(59\)      

  • D.

    \(4900\)

Đáp án : A

Phương pháp giải :

Sử dụng  tính chất phân phối của phép nhân với phép trừ \(ab - ac = a\left( {b - c} \right).\)

Lời giải chi tiết :

Ta có \(49.15 - 49.5\)\( = 49.\left( {15 - 5} \right) = 49.10 = 490.\)

Câu 12 :

Kết quả của phép tính $12.100 + 100.36 - 100.19$ là

  • A.

    \(29000\)             

  • B.

    \(3800\)          

  • C.

    \(290\)      

  • D.

    \(2900\)

Đáp án : D

Phương pháp giải :

Sử dụng tính chất phân phối của phép nhân với phép cộng; phép trừ \(ab + ac - ad = a\left( {b + d - c} \right).\)

Lời giải chi tiết :

Ta có $12.100 + 100.36 - 100.19$\( = 100.\left( {12 + 36 - 19} \right) = 100.29 = 2900.\)

Trắc nghiệm Các dạng toán về phép trừ và phép chia Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về phép trừ và phép chia Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 4: Lũy thừa với số mũ tự nhiên Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 4: Lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về lũy thừa với số mũ tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 5: Thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 5: Thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về thứ tự thực hiện các phép tính Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về thứ tự thực hiện các phép tính Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 6: Chia hết và chia có dư. Tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 6: Chia hết và chia có dư. Tính chất chia hết của một tổng Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về chia hết và chia có dư, tính chất chia hết của một tổng Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 7: Dấu hiệu chia hết cho 2, cho 5 Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 7: Dấu hiệu chia hết cho 2, cho 5 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về dấu hiệu chia hết cho 2, cho 5 Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về dấu hiệu chia hết cho 2, cho 5 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 8: Dấu hiệu chia hết cho 3, cho 9 Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 8: Dấu hiệu chia hết cho 3, cho 9 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về dấu hiệu chia hết cho 3, cho 9 Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về dấu hiệu chia hết cho 3, cho 9 Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 9: Ước và bội Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 9: Ước và bội Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về ước và bội Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về ước và bội Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về số nguyên tố, hợp số, phân tích một số ra thừa số nguyên tố Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về số nguyên tố, hợp số, phân tích một số ra thừa số nguyên tố Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 12: Ước chung. Ước chung lớn nhất Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 12: Ước chung. Ước chung lớn nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về ước chung, ước chung lớn nhất Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về ước chung, ước chung lớn nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 13: Bội chung. Bội chung nhỏ nhất Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 13: Bội chung. Bội chung nhỏ nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về bội chung, bội chung nhỏ nhất Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về bội chung, bội chung nhỏ nhất Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài tập ôn tập chương 1: Số tự nhiên Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài tập ôn tập chương 1: Số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về phép cộng và phép nhân (tiếp) Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép nhân (tiếp) Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về phép cộng và phép nhân Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về phép cộng và phép nhân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 3. Phép cộng và phép nhân Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 3. Phép cộng và phép nhân Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về tập hợp số tự nhiên, ghi số tự nhiên Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về tập hợp số tự nhiên, ghi số tự nhiên Toán 7 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 2: Tập hợp số tự nhiên. Ghi số tự nhiên Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 2: Tập hợp số tự nhiên. Ghi số tự nhiên Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Các dạng toán về tập hợp, phần tử của tập hợp Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Các dạng toán về tập hợp, phần tử của tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết
Trắc nghiệm Bài 1: Tập hợp. Phần tử của tập hợp Toán 6 Chân trời sáng tạo

Luyện tập và củng cố kiến thức Bài 1: Tập hợp. Phần tử của tập hợp Toán 6 với đầy đủ các dạng bài tập trắc nghiệm có đáp án và lời giải chi tiết

Xem chi tiết